Skip to main content

Advertisement

Log in

Controllable Photoelectric Properties of Carbon Dots and Their Application in Organic Solar Cells

  • Review
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Organic solar cells are a current research hotspot in the energy field because of their advantages of lightness, translucency, roll to roll printing and building integration. With the rapid development of small molecule acceptor materials with high-performance, the efficiency of organic solar cells has been greatly improved. Further improving the device efficiency and stability and reducing the cost of active layer materials will contribute to the industrial development of organic solar cells. As a novel type of carbon nanomaterials, carbon dots gradually show great application potential in the field of organic solar cells due to their advantages of low preparation cost, non-toxicity and excellent photoelectric performance. Firstly, the synthesis and classification of carbon dots are briefly introduced. Secondly, the photoelectric properties of carbon dots and their adjusting, including adjustable surface energy level structure, good film-forming performance and up/down conversion characteristics are summarized. Thirdly, based on these intrinsic properties, the feasibility and advantages of carbon dots used in organic solar cells are discussed. Fourthly, the application progress of carbon dots in the active layer, hole transport layer, electron transport layer, interface modification layer and down-conversion materials of organic solar cells is also reviewed. Finally, the application progress of carbon dots in organic solar cells is prospected. Several further research directions, including in-depth exploration of the controllable preparation of carbon dots and their application in the fields of interface layer and up/down conversion for improving efficiency and stability of device are pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chatterjee, S.; Jinnai, S.; Ie, Y. Nonfullerene acceptors for P3HT-based organic solar cells. J. Mater. Chem. A 2021, 9, 18857–18886.

    Article  CAS  Google Scholar 

  2. Zhao, C. W.; Zhang, Z.; Han, F. M.; Xia, D. D.; Xiao, C. Y.; Fang, J.; Zhang, Y. F.; Wu, B. H.; You, S. Y.; Wu, Y. G.; Li, W. W. An organic-inorganic hybrid electrolyte as a cathode interlayer for efficient organic solar cells. Angew. Chem. Int. Ed. 2021, 60, 8526–8531.

    Article  CAS  Google Scholar 

  3. Wang, G.; Melkonyan, F. S.; Facchetti, A.; Marks, T. J. All-polymer solar cells: recent progress, challenges, and prospects. Angew. Chem. Int. Ed. 2019, 58, 4129–4142.

    Article  CAS  Google Scholar 

  4. Cheng, P.; Zhan, X. W. Stability of organic solar cells: challenges and strategies. Chem. Soc. Rev. 2016, 45, 2544–2582.

    Article  CAS  PubMed  Google Scholar 

  5. Po, R.; Carbonera, C.; Bernardi, A.; Camaioni, N. The role of buffer layers in polymer solar cells. Energ. Environ. Sci. 2011, 4, 285–310.

    Article  CAS  Google Scholar 

  6. Mirsafaei, M.; Fallahpour, A. H.; Lugli, P.; Rubahn, H. G.; Adam, J.; Madsen, M. The influence of electrical effects on device performance of organic solar cells with nano-structured electrodes. Sci. Rep. 2017, 7, 5300.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yuan, J.; Zhang, Y. Q.; Zhou, L. Y.; Zhang, G. C.; Yip, H. L.; Lau, T. K.; Lu, X. H.; Zhu, C.; Peng, H. J.; Johnson, P. A.; Leclerc, M.; Cao, Y.; Ulanski, J.; Li, Y. F.; Zou, Y. P. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 2019, 3, 1140–1151.

    Article  CAS  Google Scholar 

  8. Hong, L.; Yao, H. F.; Wu, Z.; Cui, Y.; Zhang, T.; Xu, Y.; Yu, R. N.; Liao, Q.; Gao, B. W.; Xian, K. H.; Woo, H. Y.; Ge, Z. Y.; Hou, J. H. Eco-compatible solvent-processed organic photovoltaic cells with over 16% efficiency. Adv. Mater. 2019, 31, 1903441.

    Article  Google Scholar 

  9. Zhu, F.; Chen, X. H.; Lu, Z.; Yang, J. X.; Huang, S. M.; Sun, Z. Efficiency enhancement of inverted polymer solar cells using ionic liquid-functionalized carbon nanoparticles-modified ZnO as electron selective layer. Nano-Micro. Lett. 2014, 6, 24–29.

    Article  Google Scholar 

  10. Kim, J. K.; Park, M. J.; Kim, S. J.; Wang, D. H.; Cho, S. P.; Bae, S.; Park, J. H.; Hong, B. H. Balancing light absorptivity and carrier conductivity of graphene quantum dots for high-efficiency bulk heterojunction solar cells. ACS Nano 2013, 7, 7207–7212.

    Article  CAS  PubMed  Google Scholar 

  11. Dabera, G. D. M. R.; Jayawardena, K. D. G. I.; Prabhath, M. R. R.; Yahya, I.; Tan, Y. Y.; Nismy, N. A.; Shiozawa, H.; Sauer, M.; Ruiz-Soria, G.; Ayala, P.; Stolojan, V.; Adikaari, A. A. D. T.; Jarowski, P. D.; Pichler, T.; Silva, S. R. P. Hybrid carbon nanotube networks as efficient hole extraction layers for organic photovoltaics. ACS Nano 2013, 7, 556–565.

    Article  CAS  PubMed  Google Scholar 

  12. Mihailetchi, V. D.; Xie, H. X.; de Boer, B.; Koster, L. J. A.; Blom, P. W. M. Charge transport and photocurrent generation in poly(3-hexylthiophene): methanofullerene bulk-heterojunction solar cells. Adv. Funct. Mater. 2006, 16, 699–708.

    Article  CAS  Google Scholar 

  13. Lee, Y. Y.; Tu, K. H.; Yu, C. C.; Li, S. S.; Hwang, J. Y.; Lin, C. C.; Chen, K. H.; Chen, L. C.; Chen, H. L.; Chen, C. W. Top laminated graphene electrode in a semitransparent polymer solar cell by simultaneous thermal annealing/releasing method. ACS Nano 2011, 5, 6564–6570.

    Article  CAS  PubMed  Google Scholar 

  14. Lee, J. M.; Kwon, B. H.; Park, H. I.; Kim, H.; Kim, M. G.; Park, J. S.; Kim, E. S.; Yoo, S.; Jeon, D. Y.; Kim, S. O. Exciton dissociation and charge-transport enhancement in organic solar cells with quantum-dot/N-doped CNT hybrid nanomaterials. Adv. Mater. 2013, 25, 2011–2017.

    Article  CAS  PubMed  Google Scholar 

  15. Lin, X. F.; Yang, Y. Z.; Nian, L.; Su, H.; Ou, J. M.; Yuan, Z. K.; Xie, F. Y.; Hong, W.; Yu, D. S.; Zhang, M. Q.; Ma, Y. G.; Chen, X. D. Interfacial modification layers based on carbon dots for efficient inverted polymer solar cells exceeding 10% power conversion efficiency. Nano Energy 2016, 26, 216–223.

    Article  CAS  Google Scholar 

  16. Zheng, Z.; Awartani, O. M.; Gautam, B.; Liu, D. L.; Qin, Y. P.; Li, W. N.; Bataller, A.; Gundogdu, K.; Ade, H.; Hou, J. H. Efficient charge transfer and fine-tuned energy level alignment in a THF-processed fullerene- free organic solar cell with 11.3% efficiency. Adv. Mater. 2017, 29, 1604241.

    Article  Google Scholar 

  17. Mishra, V.; Patil, A.; Thakur, S.; Kesharwani, P. Carbon dots: emerging theranostic nanoarchitectures. Drug. Discov. Today 2018, 23, 1219–1232.

    Article  CAS  PubMed  Google Scholar 

  18. Cai, T. T.; Liu, B.; Pang, E. N.; Ren, W. J.; Li, S. J.; Hu, S. L. A review on the preparation and applications of coal-based fluorescent carbon dots. New Carbon Mater. 2020, 35, 646–664.

    Article  Google Scholar 

  19. Yue, L. J.; Wei, Y. Y.; Fan, J. B.; Chen, L.; Li, Q.; Du, J. L.; Yu, S. P.; Yang, Y. Z. Research progress in the use of cationic carbon dots for the integration of cancer diagnosis with gene treatment. New Carbon Mater. 2021, 36, 373–389.

    Article  Google Scholar 

  20. Cui, B.; Feng, X. T.; Zhang, F.; Wang, Y. L.; Liu, X. G.; Yang, Y. Z.; Jia, H. S. The use of carbon quantum dots as fluorescent materials in white LEDs. New Carbon Mater. 2017, 32, 385–401.

    Article  CAS  Google Scholar 

  21. Yang, S. T.; Cao, L.; Luo, P. G. J.; Lu, F. S.; Wang, X.; Wang, H. F.; Meziani, M. J.; Liu, Y. F.; Qi, G.; Sun, Y. P. Carbon dots for optical imaging. in vivo. J. Am. Chem. Soc. 2009, 131, 11308–11309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xu, X.; Ray, R.; Gu, Y.; Ploehn, H. J.; Gearheart, L.; Raker, K.; Scrivens, W. A. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 2015, 126, 12736–12737.

    Article  Google Scholar 

  23. Zhao, Q. L.; Zhang, Z. L.; Huang, B. H.; Peng, J.; Zhang, M.; Pang, D. W. Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite. Chem. Commun. 2008, 5116–5118.

  24. Li, W. D.; Liu, Y.; Wang, B. Y.; Song, H. Q.; Liu, Z. Y.; Lu, S. Y.; Yang, B. Kilogram-scale synthesis of carbon quantum dots for hydrogen evolution, sensing and bioimaging. Chinese Chem. Lett. 2019, 30, 2323–2327.

    Article  CAS  Google Scholar 

  25. Kang, C.; Huang, Y.; Yang, H.; Yan, X. F.; Chen, Z. P. A review of carbon dots produced from biomass wastes. Nanomaterials-Basel. 2020, 10, 2316.

    Article  CAS  PubMed Central  Google Scholar 

  26. Achilleos, D. S.; Yang, W. X.; Kasap, H.; Savateev, A.; Markushyna, Y.; Durrant, J. R.; Reisner, E. Solar reforming of biomass with homogeneous carbon dots. Angew. Chem. Int. Ed. 2020, 59, 18184–18188.

    Article  CAS  Google Scholar 

  27. Zhu, S. J.; Meng, Q. N.; Wang, L.; Zhang, J. H.; Song, Y. B.; Jin, H.; Zhang, K.; Sun, H. C.; Wang, H. Y.; Yang, B. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem. Int. Ed. 2013, 52, 3953–3957.

    Article  CAS  Google Scholar 

  28. Tomskaya, A. E.; Egorova, M. N.; Kapitonov, A. N.; Nikolaev, D. V.; Popov, V. I.; Fedorov, A. L.; Smagulova, S. A. Synthesis of luminescent N-doped carbon dots by hydrothermal treatment. Phys. Status. Solidi. B 2018, 255, 1700222.

    Article  Google Scholar 

  29. Liu, Y.; Xiao, N.; Gong, N. Q.; Wang, H.; Shi, X.; Gu, W.; Ye, L. One-step microwave-assisted polyol synthesis of green luminescent carbon dots as optical nanoprobes. Carbon 2014, 68, 258–264.

    Article  CAS  Google Scholar 

  30. Bourlinos, A. B.; Stassinopoulos, A.; Anglos, D.; Zboril, R.; Karakassides, M.; Giannelis, E. P. Surface functionalized carbogenic quantum dots. Small 2008, 4, 455–458.

    Article  CAS  PubMed  Google Scholar 

  31. Wang, B. Y.; Song, H. Q.; Qu, X. L.; Chang, J. B.; Yang, B.; Lu, S. Y. Carbon dots as a new class of nanomedicines: opportunities and challenges. Coordin. Chem. Rev. 2021, 442, 214010.

    Article  CAS  Google Scholar 

  32. Guo, R. T.; Li, L.; Wang, B. W.; Xiang, Y. G.; Zou, G. Q.; Zhu, Y. R.; Hou, H. S.; Ji, X. B. Functionalized carbon dots for advanced batteries. Energy Storage Mater. 2021, 37, 8–39.

    Article  Google Scholar 

  33. Rigodanza, F.; Burian, M.; Arcudi, F.; Dordevic, L.; Amenitsch, H.; Prato, M. Snapshots into carbon dots formation through a combined spectroscopic approach. Nat. Commun. 2021, 12, 2640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li, D.; Jing, P. T.; Sun, L. H.; An, Y.; Shan, X. Y.; Lu, X. H.; Zhou, D.; Han, D.; Shen, D. Z.; Zhai, Y. C.; Qu, S. N.; Zboril, R.; Rogach, A. L. Near-infrared excitation/emission and multiphoton-induced fluorescence of carbon dots. Adv. Mater. 2018, 30, 1705913.

    Article  Google Scholar 

  35. Zhu, S. J.; Song, Y. B.; Zhao, X. H.; Shao, J. R.; Zhang, J. H.; Yang, B. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Res. 2015, 8, 355–381.

    Article  CAS  Google Scholar 

  36. Lv, K. L.; Suo, W. Q.; Shao, M. D.; Zhu, Y.; Wang, X. P.; Feng, J. J.; Fang, M. W. Nitrogen doped MoS2 and nitrogen doped carbon dots composite catalyst for electroreduction CO2 to CO with high faradaic efficiency. Nano Energy 2019, 63, 103834.

    Article  CAS  Google Scholar 

  37. Song, H. Q.; Liu, X. J.; Wanga, B. Y.; Tang, Z. Y.; Lu, S. Y. High production-yield solid-state carbon dots with tunable photoluminescence for white/multi-color light-emitting diodes. Sci. Bull. 2019, 64, 1788–1794.

    Article  CAS  Google Scholar 

  38. Hola, K.; Sudolska, M.; Kalytchuk, S.; Nachtigallova, D.; Rogach, A. L.; Otyepka, M.; Zboril, R. Graphitic nitrogen triggers red fluorescence in carbon dots. ACS Nano 2017, 11, 12402–12410.

    Article  CAS  PubMed  Google Scholar 

  39. Tang, L. B.; Ji, R. B.; Li, X. M.; Bai, G. X.; Liu, C. P.; Hao, J. H.; Lin, J. Y.; Jiang, H. X.; Teng, K. S.; Yang, Z. B.; Lau, S. P. Deep ultraviolet to near-infrared emission and photoresponse in layered N-doped graphene quantum dots. ACS Nano 2014, 8, 6312–6320.

    Article  CAS  PubMed  Google Scholar 

  40. Zheng, X. T.; Ananthanarayanan, A.; Luo, K. Q.; Chen, P. Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small 2015, 11, 1620–1636.

    Article  CAS  PubMed  Google Scholar 

  41. Wu, Z. L.; Liu, Z. X.; Yuan, Y. H. Carbon dots: materials, synthesis, properties and approaches to long-wavelength and multicolor emission. J. Mater. Chem. B 2017, 5, 3794–3809.

    Article  CAS  PubMed  Google Scholar 

  42. Yeh, T. F.; Huang, W. L.; Chung, C. J.; Chiang, I. T.; Chen, L. C.; Chang, H. Y.; Su, W. C.; Cheng, C.; Chen, S. J.; Teng, H. S. Elucidating quantum confinement in graphene oxide dots based on excitation-wavelength-independent photoluminescence. J. Phys. Chem. Lett. 2016, 7, 2087–2092.

    Article  CAS  PubMed  Google Scholar 

  43. Bao, L.; Zhang, Z. L.; Tian, Z. Q.; Zhang, L.; Liu, C.; Lin, Y.; Qi, B. P.; Pang, D. W. Electrochemical tuning of luminescent carbon nanodots: from preparation to luminescence mechanism. Adv. Mater. 2011, 23, 5801–5806.

    Article  CAS  PubMed  Google Scholar 

  44. Su, Y.; Xie, Z. G.; Zheng, M. Carbon dots with concentration-modulated fluorescence: aggregation-induced multicolor emission. J. Colloid. Interf. Sci. 2020, 573, 241–249.

    Article  CAS  Google Scholar 

  45. Li, H. T.; He, X. D.; Kang, Z. H.; Huang, H.; Liu, Y.; Liu, J. L.; Lian, S. Y.; Tsang, C. H. A.; Yang, X. B.; Lee, S. T. Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew. Chem. Int. Ed. 2010, 49, 4430–4434.

    Article  CAS  Google Scholar 

  46. Tian, R. X.; Hu, S. L.; Wu, L. L.; Chang, Q.; Yang, J. L.; Liu, J. Tailoring surface groups of carbon quantum dots to improve photoluminescence behaviors. Appl. Surf. Sci. 2014, 301, 156–160.

    Article  CAS  Google Scholar 

  47. Behera, R. K.; Sau, A.; Mishra, L.; Bera, K.; Mallik, S.; Nayak, A.; Basu, S.; Sarangi, M. K. Redox modifications of carbon dots shape their optoelectronics. J. Phys. Chem. C 2019, 123, 27937–27944.

    Article  CAS  Google Scholar 

  48. Yang, Y. Z.; Lin, X. F.; Li, W. L.; Ou, J. M.; Yuan, Z. K.; Xie, F. Y.; Hong, W.; Yu, D. S.; Ma, Y. G.; Chi, Z. G.; Chen, X. D. One-pot large-scale synthesis of carbon quantum dots: efficient cathode interlayers for polymer solar cells. ACS Appl. Mater. Interfaces 2017, 9, 14953–14959.

    Article  CAS  PubMed  Google Scholar 

  49. Pan, L. L.; Sun, S.; Zhang, A. D.; Jiang, K.; Zhang, L.; Dong, C. Q.; Huang, Q.; Wu, A. G.; Lin, H. W. Truly fluorescent excitation-dependent carbon dots and their applications in multicolor cellular imaging and multidimensional sensing. Adv. Mater. 2015, 27, 7782–7787.

    Article  CAS  PubMed  Google Scholar 

  50. Fu, M.; Ehrat, F.; Wang, Y.; Milowska, K. Z.; Reckmeier, C.; Rogach, A. L.; Stolarczyk, J. K.; Urban, A. S.; Feldmann, J. Carbon dots: a unique fluorescent cocktail of polycyclic aromatic hydrocarbons. Nano Lett. 2015, 15, 6030–6035.

    Article  CAS  PubMed  Google Scholar 

  51. Zhan, J.; Geng, B. J.; Wu, K.; Xu, G.; Wang, L.; Guo, R. Y.; Lei, B.; Zheng, F. F.; Pan, D. Y.; Wu, M. H. A solvent-engineered molecule fusion strategy for rational synthesis of carbon quantum dots with multicolor bandgap fluorescence. Carbon 2018, 130, 153–163.

    Article  CAS  Google Scholar 

  52. Lu, S. Y.; Sui, L. Z.; Liu, J. J.; Zhu, S. J.; Chen, A. M.; Jin, M. X.; Yang, B. Near-infrared photoluminescent polymer-carbon nanodots with two-photon fluorescence. Adv. Mater. 2017, 29, 1603443.

    Article  Google Scholar 

  53. Zhang, M. L.; Hu, L. L.; Wang, H. B.; Song, Y. X.; Liu, Y.; Li, H.; Shao, M. W.; Huang, H.; Kang, Z. H. One-step hydrothermal synthesis of chiral carbon dots and their effects on mung bean plant growth. Nanoscale 2018, 10, 12734–12742.

    Article  CAS  PubMed  Google Scholar 

  54. Jia, X. F.; Li, J.; Wang, E. K. One-pot green synthesis of optically pH-sensitive carbon dots with upconversion luminescence. Nanoscale 2012, 4, 5572–5575.

    Article  CAS  PubMed  Google Scholar 

  55. Shen, J. H.; Zhu, Y. H.; Chen, C.; Yang, X. L.; Li, C. Z. Facile preparation and upconversion luminescence of graphene quantum dots. Chem. Commun. 2011, 47, 2580–2582.

    Article  CAS  Google Scholar 

  56. Lu, S. Y.; Yang, B. One step synthesis of efficient orange-red emissive polymer carbon nanodots displaying unexpect two photon fluorescence. Acta Polymerica Sinica (in Chinese) 2017, 1200–1206.

  57. Zhan, Q. Q.; Wang, B. J.; Wen, X. Y.; He, S. L. Controlling the excitation of upconverting luminescence for biomedical theranostics: neodymium sensitizing. Opt. Mater. Express 2016, 6, 1011–1023.

    Article  CAS  Google Scholar 

  58. Molaei, M. J. The optical properties and solar energy conversion applications of carbon quantum dots: a review. Sol. Energy 2020, 196, 549–566.

    Article  CAS  Google Scholar 

  59. He, C.; Peng, L. K.; Lv, L. Z.; Cao, Y.; Tu, J. C.; Huang, W.; Zhang, K. X. In situ growth of carbon dots on TiO2 nanotube arrays for PEC enzyme biosensors with visible light response. RSC Adv. 2019, 9, 15084–15091.

    Article  CAS  Google Scholar 

  60. Lee, E.; Ryu, J.; Jang, J. Fabrication of graphene quantum dots via size-selective precipitation and their application in upconversion-based dsscs. Chem. Commun. 2013, 49, 9995–9997.

    Article  CAS  Google Scholar 

  61. Zhu, S. J.; Zhang, J. H.; Liu, X.; Li, B.; Wang, X. F.; Tang, S. J.; Meng, Q. N.; Li, Y. F.; Shi, C.; Hu, R.; Yang, B. Graphene quantum dots with controllable surface oxidation, tunable fluorescence and upconversion emission. RSC Adv. 2012, 2, 2717–2720.

    Article  CAS  Google Scholar 

  62. Shockley, W.; Queisser, H. J. Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 1961, 32, 510–519.

    Article  CAS  Google Scholar 

  63. Richards, B. S. Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers. Sol. Energ. Mat. Sol. C 2006, 90, 2329–2337.

    Article  CAS  Google Scholar 

  64. Chen, X.; Liu, Q.; Wu, Q. L.; Du, P. W.; Zhu, J.; Dai, S. Y.; Yang, S. F. Incorporating graphitic carbon nitride (g-C3N4) quantum dots into bulk-heterojunction polymer solar cells leads to efficiency enhancement. Adv. Funct. Mater. 2016, 26, 1719–1728.

    Article  CAS  Google Scholar 

  65. Liu, Q.; Jiang, Y.; Jin, K.; Qin, J.; Ding, L. 18% Efficiency organic solar cells. Sci. Bull. 2020, 65, 272–275.

    Article  CAS  Google Scholar 

  66. Zhang, Q. Q. The preparation and application of carbon dots composites, Master’s thesis, Beijing University of Chemical Technology, 2018.

  67. Liu, X. H. Study on the fabrication and perfoemance of organic solar cells based on the modified ZnO interlayer, Doctoral Dissertation, Chinese Academy of Sciences, 2017.

  68. Angelini, G.; De Maria, P.; Fontana, A.; Pierini, M.; Maggini, M.; Gasparrini, F.; Zappia, G. Study of the aggregation properties of a novel amphiphilic C60 fullerene derivative. Langmuir 2001, 17, 6404–6407.

    Article  CAS  Google Scholar 

  69. Kwon, W.; Lee, G.; Do, S.; Joo, T.; Rhee, S. W. Size-controlled soft-template synthesis of carbon nanodots toward versatile photoactive materials. Small 2014, 10, 506–513.

    Article  CAS  PubMed  Google Scholar 

  70. Sharma, R.; Alam, F.; Sharma, A. K.; Dutta, V.; Dhawan, S. K. Role of zinc oxide and carbonaceous nanomaterials in non-fullerene-based polymer bulk heterojunction solar cells for improved cost-to-performance ratio. J. Mater. Chem. A 2015, 3, 22227–22238.

    Article  CAS  Google Scholar 

  71. Lim, H.; Lee, K. S.; Liu, Y.; Kim, H. Y.; Son, D. I. Photovoltaic performance of inverted polymer solar cells using hybrid carbon quantum dots and absorption polymer materials. Electron Mater. Lett. 2018, 14, 581–586.

    Article  CAS  Google Scholar 

  72. Liu, C. Y.; Chang, K. W.; Guo, W. B.; Li, H.; Shen, L.; Chen, W. Y.; Yan, D. W. Improving charge transport property and energy transfer with carbon quantum dots in inverted polymer solar cells. Appl. Phys. Lett. 2014, 105, 073306.

    Article  Google Scholar 

  73. Zhang, X. Y.; Li, Z. Q.; Zhang, Z. H.; Liu, C. Y.; Li, J. F.; Guo, W. B.; Qu, S. N. Employing easily prepared carbon nanoparticles to improve performance of inverted organic solar cells. ACS Sustain. Chem. Eng. 2016, 4, 2359–2365.

    Article  CAS  Google Scholar 

  74. Cui, B.; Yan, L. P.; Gu, H. M.; Yang, Y. Z.; Liu, X. G.; Ma, C. Q.; Chen, Y. K.; Jia, H. S. Fluorescent carbon quantum dots synthesized by chemical vapor deposition: an alternative candidate for electron acceptor in polymer solar cells. Opt. Mater. 2018, 75, 166–173.

    Article  CAS  Google Scholar 

  75. Wang, Y. W.; Lan, W. X.; Li, N.; Lan, Z. J.; Li, Z.; Jia, J. N.; Zhu, F. R. Stability of nonfullerene organic solar cells: from built-in potential and interfacial passivation perspectives. Adv. Energy Mater. 2019, 9, 1900157.

    Article  Google Scholar 

  76. Wang, Y. L.; Yan, L. P.; Ji, G. Q.; Wang, C.; Gu, H. M.; Luo, Q.; Chen, Q.; Chen, L. W.; Yang, Y. Z.; Ma, C. Q.; Liu, X. G. Synthesis of N, S-doped carbon quantum dots for use in organic solar cells as the ZnO modifier to eliminate the light-soaking effect. ACS Appl. Mater. Interfaces 2019, 11, 2243–2253.

    Article  CAS  PubMed  Google Scholar 

  77. Xu, H.; Zhang, L.; Ding, Z. C.; Hu, J. L.; Liu, J.; Liu, Y. C. Edge-functionalized graphene quantum dots as a thickness-insensitive cathode interlayer for polymer solar cells. Nano Res. 2018, 11, 4293–4301.

    Article  CAS  Google Scholar 

  78. Ding, Z. C.; Miao, Z. S.; Xie, Z. Y.; Liu, J. Functionalized graphene quantum dots as a novel cathode interlayer of polymer solar cells. J. Mater. Chem. A 2016, 4, 2413–2418.

    Article  CAS  Google Scholar 

  79. Yan, L. P.; Yang, Y. Z.; Ma, C. Q.; Liu, X. G.; Wang, H.; Xu, B. S. Synthesis of carbon quantum dots by chemical vapor deposition approach for use in polymer solar cell as the electrode buffer layer. Carbon 2016, 109, 598–607.

    Article  CAS  Google Scholar 

  80. Li, M. M.; Ni, W.; Kan, B.; Wan, X. J.; Zhang, L.; Zhang, Q.; Long, G. K.; Zuo, Y.; Chen, Y. S. Graphene quantum dots as the hole transport layer material for high-performance organic solar cells. Phys. Chem. Chem. Phys. 2013, 15, 18973–18978.

    Article  CAS  PubMed  Google Scholar 

  81. Ding, Z. C.; Hao, Z.; Meng, B.; Xie, Z. Y.; Liu, J.; Dai, L. M. Few-layered graphene quantum dots as efficient hole-extraction layer for high-performance polymer solar cells. Nano Energy 2015, 15, 186–192.

    Article  CAS  Google Scholar 

  82. Zhang, H. J.; Zhang, Q.; Li, M. M.; Kan, B.; Ni, W.; Wang, Y. C.; Yang, X.; Du, C. X.; Wan, X. J.; Chen, Y. S. Investigation of the enhanced performance and lifetime of organic solar cells using solution-processed carbon dots as the electron transport layers. J. Mater. Chem. C 2015, 3, 12403–12409.

    Article  CAS  Google Scholar 

  83. Hasani, A.; Gavgani, J. N.; Pashaki, R. M.; Baseghi, S.; Salehi, A.; Heo, D.; Kim, S. Y.; Mahyari, M. Poly(3,4 ethylenedioxythiophene): poly(styrenesulfonate)/iron(III) porphyrin supported on S and N co-doped graphene quantum dots as a hole transport layer in polymer solar cells. Sci. Adv. Mater. 2017, 9, 1616–1625.

    Article  CAS  Google Scholar 

  84. Kim, J. K.; Kim, S. J.; Park, M. J.; Bae, S.; Cho, S. P.; Du, Q. G.; Wang, D. H.; Park, J. H.; Hong, B. H. Surface-engineered graphene quantum dots incorporated into polymer layers for high performance organic photovoltaics. Sci. Rep. 2015, 5, 14276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Dang, Y.; Wang, Y. H.; Shen, S.; Huang, S.; Qu, X. W.; Pang, Y.; Silva, S. R. P.; Kang, B. N.; Lu, G. Y. Solution processed hybrid graphene-MoO3 hole transport layers for improved performance of organic solar cells. Org. Electron. 2019, 67, 95–100.

    Article  CAS  Google Scholar 

  86. Zhao, W. S.; Yan, L. P.; Gu, H. M.; Li, Z. R.; Wang, Y. L.; Luo, Q.; Yang, Y. Z.; Liu, X. G.; Wang, H.; Ma, C. Q. Zinc oxide coated carbon dot nanoparticles as electron transport layer for inverted polymer solar cells. ACS Appl. Energ. Mater. 2020, 3, 11388–11397.

    Article  CAS  Google Scholar 

  87. Zhang, R. Q.; Zhao, M.; Wang, Z. Q.; Wang, Z. T.; Zhao, B.; Miao, Y. Q.; Zhou, Y. J.; Wang, H.; Hao, Y. Y.; Chen, G.; Zhu, F. R. Solution-processable ZnO/carbon quantum dots electron extraction layer for highly efficient polymer solar cells. ACS Appl. Mater. Inter. 2018, 10, 4895–4903.

    Article  CAS  Google Scholar 

  88. Kang, R.; Park, S.; Jung, Y. K.; Lim, D. C.; Cha, M. J.; Seo, J. H.; Cho, S. High-efficiency polymer homo-tandem solar cells with carbon quantum-dot-doped tunnel junction intermediate layer. Adv. Energy. Mater. 2018, 8, 1702165.

    Article  Google Scholar 

  89. Li, Z. Q.; Dong, J. J.; Liu, C. Y.; Zhang, X. L.; Zhang, X. Y.; Shen, L.; Guo, W. B.; Zhang, L.; Long, Y. B. Improved optical field distribution and charge extraction through an interlayer of carbon nanospheres in polymer solar cells. Chem. Mater. 2017, 29, 2961–2968.

    Article  Google Scholar 

  90. Wang, J. A.; Li, H. R.; Lei, Q.; Chang, F. Z.; Fan, W. H.; Zhang, H.; Cai, L. N. Dual-interface modification effect of carbon quantum dots on the performance of polymer solar cells. J. Mater. Sci-Mater. El. 2019, 30, 11063–11069.

    Article  CAS  Google Scholar 

  91. Huang, J. J.; Zhong, Z. F.; Rong, M. Z.; Zhou, X.; Chen, X. D.; Zhang, M. Q. An easy approach of preparing strongly luminescent carbon dots and their polymer based composites for enhancing solar cell efficiency. Carbon 2014, 70, 190–198.

    Article  CAS  Google Scholar 

  92. Li, Z. Q.; Zhang, X. Y.; Liu, C. Y.; Guo, J. X.; Cui, H. X.; Shen, L.; Guo, W. B. Toward efficient carbon-dots-based electron-extraction layer through surface charge engineering. ACS Appl. Mater. Interfaces 2018, 10, 40255–40264.

    Article  CAS  PubMed  Google Scholar 

  93. Wang, S. C.; Li, Z. J.; Xu, X. P.; Zhang, G. J.; Li, Y.; Peng, Q. Amino-functionalized graphene quantum dots as cathode interlayer for efficient organic solar cells: quantum dot size on interfacial modification ability and photovoltaic performance. Adv. Mater. Interfaces 2019, 6, 1801480.

    Article  Google Scholar 

  94. Juang, T. Y.; Kao, J. C.; Wang, J. C.; Hsu, S. Y.; Chen, C. P. Carbonized bamboo-derived carbon nanodots as efficient cathode interfacial layers in high-performance organic photovoltaics. Adv. Mater. Interfaces 2018, 5, 1800031.

    Article  Google Scholar 

  95. Zhang, X. Y.; Liu, C. Y.; Li, Z. Q.; Guo, J. X.; Shen, L.; Guo, W. B.; Zhang, L.; Ruan, S. P.; Long, Y. B. An easily prepared carbon quantum dots and employment for inverted organic photovoltaic devices. Chem. Eng. J. 2017, 315, 621–629.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Chinese Academy of Science (No. YJKYYQ20180029), the National Natural Science Foundation of China (Nos. 22075315 and 61904121), Postdoctoral Science Foundation of China (No. 2020M681756) and Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong-Zhen Yang or Ling-Peng Yan.

Additional information

Notes

The authors declare no competing financial interest.

Biography

Yong-Zhen Yang obtained her Ph.D. degree in materials science from Taiyuan University of Technology (TYUT) in 2007. Before that she was an engineer of Shanxi Coking Group Co., LTD. She joined TYUT in 2007 and currently is a professor and doctoral supervisor of the Key Laboratory of Interface Science and Engineering in Advanced Materials in TYUT. From 2017 to 2018, she was as a visiting scholar in University of Hertfordshire, UK. She leads a group engaged in the synthesis of functionalized carbon nanomaterials and their applications in the field of optoelectronic and biomedicine.

Ling-Peng Yan received his Ph.D. degree in materials science and engineering from TYUT in 2017. After that he was appointed as a lecturer at TYUT. From 2019 to 2021, he did his postdoctoral research at Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (SINANO, CAS) with Prof. Chang-Qi Ma. He is now an associate researcher at TYUT. His research interests are focused on the stability of organic solar cells and synthesis and application of carbon nanomaterials.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, WS., Li, XX., Zha, H. et al. Controllable Photoelectric Properties of Carbon Dots and Their Application in Organic Solar Cells. Chin J Polym Sci 40, 7–20 (2022). https://doi.org/10.1007/s10118-021-2637-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2637-5

Keywords

Navigation