Skip to main content
Log in

Phenylethynyl-terminated Imide Oligomers Modified by Reactive Diluent for Resin Transfer Molding Application

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

To meet the processing requirements of resin transfer moulding (RTM) technology, reactive diluent containing m-phenylene moiety was synthesized to physically mixed with phenylethynyl terminated cooligoimides with well-designed molecular weights of 1500–2500 g/mol derived from 4,4′-(hexafluoroisopropylidene)diphthalic anhydride (6FDA), 3,4′-oxydianiline (3,4′-ODA) and m-phenylenediamine (m-PDA). This blend shows low minimum melting viscosity (<1 Pa·s) and enlarged processing temperature window (260–361 °C). FPI-R-1 stays below 1 Pa·s for 2 h at 270 °C. The relationship between the molecular weight of the blend and its melting stability was first explored. Blending oligoimides with lower molecular weights exhibit better melting stability. Upon curing at 380 °C for 2 h, the thermosetting polyimide resin demonstrates superior heat resistance (Tg=420–426 °C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smith, J. G.; Connell, J. W.; Hergenrother, P. M. The effect of phenylethynyl terminated imide oligomer molecular weight on the properties of composites. J. Compos Mater. 2000, 34, 614–628.

    Article  CAS  Google Scholar 

  2. Mangalgiri, P. D. Polymer-matrix composites for high-temperature applications. Def. Sci. J. 2005, 55, 175–193.

    Article  CAS  Google Scholar 

  3. Connell, J. W.; Smith, J. G.; Hergenrother, P. M. Oligomers and polymers containing phenylethynyl groups. J. Macromol. Sci.: Polym. Rev. 2000, 40, 207–230.

    Article  Google Scholar 

  4. Chuang, K. C.; Bowles, K. J.; Papadopoulos, D.; Hardy-Green, D.; McCorkle, L. A high Tg PMR polyimide composites (DMBZ-15). J. Adv. Mater. 2001, 33, 33–38.

    CAS  Google Scholar 

  5. Serafini, T. T. Delvigs, P.; Lightsey, G. R. Thermally stable polyimides from solutions of monomeric reactants. J. Appl. Polym. Sci. 1972, 16, 905–915.

    Article  CAS  Google Scholar 

  6. Vannucci, R. D.; Cifani, D. The 700 F Properties of Autoclave Cured PMR-2, NASA-TM-100923 1988.

  7. Wang, Z. H.; Fang, G. Q.; He, J. J.; Yang, H. X.; Yang, S. Y. Semi-aromatic thermosetting polyimide resins containing alicyclic units for achieving low melt viscosity and low dielectric constant. React. Funct. Polym. 2020, 146, 104411.

    Article  CAS  Google Scholar 

  8. Cho, D.; Drzal, L. T. Phenylethynyl-terminated polyimide, exfoliated graphite nanoplatelets, and the composites: an overview. Carbon Lett. 2016, 19, 1–11.

    Article  CAS  Google Scholar 

  9. Liaw, D. J.; Wang, K. L.; Huang, Y. C.; Lee, K. R.; Lai, J. Y.; Ha, C. S. Advanced polyimide materials: syntheses, physical properties and applications. Prog. Polym. Sci. 2012, 37, 907–974.

    Article  CAS  Google Scholar 

  10. Yu, P.; Wang, Y.; Yu, J. R.; Zhu, J.; Hu, Z. M. Synthesis and characterization of phenylethynyl-terminated polyimide oligomers derived from 2,3,3′,4′-diphenyl ether tetracarboxylic acid dianhydride and 3,4’-oxydianiline. Chinese J. Polym. Sci. 2016, 34, 122–134.

    Article  CAS  Google Scholar 

  11. Simone, C. D.; Scola, D. A. Modification of PETI-5K imide oligomers: effect on viscosity. High Perform. Polym. 2003, 15, 473–501.

    Article  CAS  Google Scholar 

  12. Cho, D.; Drzal, L. T. Characterization, properties, and processing of LaRC PETI-5 as a high-temperature sizing material. II. Thermal characterization. J. Appl. Polym. Sci. 2000, 75, 1278–1287.

    Article  CAS  Google Scholar 

  13. Ogasawara, T.; Ishida, Y.; Yokota, R.; Watanabe, T.; Aoi, T.; Goto, J. Processing and properties of carbon fiber/triple-A polyimide composites fabricated from imide oligomer dry prepreg. Compos. Pt. A-Appl. Sci. Manuf. 2007, 38, 1296–1303.

    Article  Google Scholar 

  14. Yokota, R.; Yamamoto, S.; Yano, S.; Sawaguchi, T.; Hasegawa, M.; Yamaguchi, H.; Ozawa, H.; Sato, R. Molecular design of heat resistant polyimides having excellent processability and high glass transition temperature. High Perform. Polym. 2016, 13, S61–S72.

    Article  Google Scholar 

  15. Ogasawara, T.; Ishikawa, T.; Yokota, R.; Ozawa, H.; Taguchi, M.; Sato, R.; Shigenari, Y.; Miyagawa, K. Processing and properties of carbon fiber reinforced triple-A polyimide (Tri-A PI) matrix composites. Adv. Compos. Mater. 2002, 11, 277–286.

    Article  Google Scholar 

  16. Cho, D.; Drzal, L. T. Characterization, properties, and processing of LaRC™ PETI-5 as a high-temperature sizing material. I. FTIR studies on imidization and phenylethynyl end-group reaction behavior. J. Appl. Polym. Sci. 2000, 76, 190–200.

    Article  CAS  Google Scholar 

  17. Fang, X.; Rogers, D. F.; Scola, D. A.; Stevens, M. P. A study of the thermal cure of a phenylethynyl-terminated imide model compound and a phenylethynyl-terminated imide oligomer (PETI-5). J. Polym. Sci., Part A: Polym. Chem. 1998, 36, 461–470.

    Article  CAS  Google Scholar 

  18. Li, Y.; Morgan, R. J. Thermal cure of phenylethynyl-terminated AFR-PEPA-4 imide oligomer and a model compound. J. Appl. Polym. Sci. 2006, 101, 4446–4453.

    Article  CAS  Google Scholar 

  19. Fang, X.; Xie, X. Q.; Simone, C. D.; Stevens, M. P.; Scola, D. A. A solid-state 13C NMR study of the cure of 13C-labeled phenylethynyl end-capped polyimides. Macromolecules. 2000, 33, 1671–1681.

    Article  CAS  Google Scholar 

  20. Zhang, Y.; Jain, A.; Grunenfelder, L. K.; Miyauchi, M.; Nutt, S. Process development for phenylethynyl-terminated PMDA-type asymmetric polyimide composites. High Perform. Polym. 2017, 30, 731–741.

    Article  Google Scholar 

  21. Cho, D.; Choi, Y.; Drzal, L. T. Simultaneous monitoring of the imidization and cure reactions of LaRC PETI-5 sized on a braided glass fabric substrate by dynamic mechanical analysis. Polymer 2001, 42, 4611–4618.

    Article  CAS  Google Scholar 

  22. Hong, W.; Yuan, L.; Ma, Y.; Cui, C.; Zhang, H.; Yang, S. Y.; Sun, W. H. Resin transfer moldable fluorinated phenylethynyl-terminated imide oligomers with high Tg: structure-melt stability relationship. Polymers 2021, 13, 903–925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Su, C. N.; Ji, M.; Fan, L.; Yang, S. Y. Phenyl-endcapped oligoimides with low melt viscosities and high Tgs: effects of the molecular weights. High Perform. Polym. 2011, 23, 352–361.

    Article  CAS  Google Scholar 

  24. Fu, X.; Zhang, C.; Liang, R.; Wang, B.; Fielding, J. C. High temperature vacuum assisted resin transfer molding of phenylethynyl terminated imide composites. Polym. Compos. 2010, 32, 52–58.

    Article  Google Scholar 

  25. Kejian, W.; Ogasawara, T.; Ishida, Y. Optimization of liquid molding cycle for a phenylethynyl terminated polyimide composite. J. Reinf. Plast. Compos. 2005, 25, 361–377.

    Article  Google Scholar 

  26. Smith, J. J. G.; Connell, J. W.; Hergenrother, P. M.; Criss, J. M. Resin teansfer moldable phenylethynyl containing imide oligomers. J. Compos. Mater. 2002, 36, 2255–2265.

    Article  CAS  Google Scholar 

  27. Connell, J. W.; Smith, J. G.; Hergenrother, Jr., P. M.; Criss, J. M. High temperature transfer molding resins: status of PETI-298 and PETI-330. NASA Langley Research Center; Hampton, VA, United States, 2003.

    Google Scholar 

  28. Smith, J. G.; Connell, J. W.; Hergenrother, P. M.; Ford, L. A.; Criss, J. M. Transfer molding imide resins based on 2,3,3′,4′- biphenyltetracarboxylic dianhydride. Macromol. Symp. 2003, 199, 401–418.

    Article  CAS  Google Scholar 

  29. Connell, J. W.; Smith, J. G.; Hergenrother, Jr. P. M.; Criss, J. M.; High temperature transfer molding resins: preliminary composite properties of PETI-375. NASA Langley Research Center, Hampton, VA, United States, 2004.

    Google Scholar 

  30. Meng, X.; Zheng, Y.; Yan, J.; Li, Y.; Wang, Z.; Li, G. 2, 3, 3′, 4′-Oxydiphthalic dianhydride-based phenylethynyl-terminated imide oligomers for low-temperature resin transfer molding applications. High Perform. Polym. 2016, 28, 962–970.

    Article  CAS  Google Scholar 

  31. Chuang, K. C.; Criss, J. M.; Mintz, E. A. Polyimides based on asymmetric dianhydrides (ii) (a-BPDA vs a-BTDA) for resin transfer molding (RTM). NASA Glenn Research Center; Cleveland, OH, United States Air Force Office of Scientific Research, Bolling AFB; Washington, DC, United States 2010.

    Google Scholar 

  32. Miyauchi, M.; Ishida, Y.; Ogasawara, T.; Yokota, R. Novel phenylethynyl-terminated PMDA-type polyimides based on KAPTON backbone structures derived from 2-phenyl-4,4′- diaminodiphenyl ether. Polym. J. 2012, 44, 959–965.

    Article  CAS  Google Scholar 

  33. Wang, W.; Chen, G.; Fang, X. 1,4-Bis(2,3-dicarboxylphenoxy)benzene dianhydride-based phenylethynyl terminated thermoset oligoimides for resin transfer molding applications. J. Appl. Polym. Sci. 2019, 136, 47967.

    Article  Google Scholar 

  34. Connell, J. W.; Smith, J. G.; Hergenrother, P. M.; Rommel, M. L. Neat resin, adhesive and composite properties of reactive additive/PETI-5 Blends. High Perform. Polym. 2000, 12, 323–333.

    Article  CAS  Google Scholar 

  35. Liu, H. B.; Simone, C. D.; Scola, D. A. Synthesis and characterization of phenylethynyl-end-capped cooligomides from fluorinated dianhydrides 4,4′-(hexafluoroisopropylidene)dipthalic anhydride and 4,4′-(2,2,2- trifluoro-1-phenylethylidene)dipthalic anhydride and para- and meta-phenylene diamines and cooligomide blends with phenylethynyl-end-capped reactive diluents. J. Polym. Sci., Part A: Polym. Chem. 2003, 41, 2630–2649.

    Article  CAS  Google Scholar 

  36. Liu, H.; Simone, C. D.; Katiyar, P. S.; Scola, D. A. Adhesive properties of low-viscosity phenylethynyl (PE) end-capped co-oligomides and co-oligomide blends. Int. J. Adhes. Adhes. 2005, 25, 219–226.

    Article  CAS  Google Scholar 

  37. Rao, X.; Dang, G.; Zhou, H.; Yang, W.; Cui, G.; Chen, C.; Yokota, R. Design and synthesis of a tribranched phenylethynyl-terminated aryl ether compound and its use as a reactive diluent for PETI-5. J. Polym. Sci., Part A: Polym. Chem. 2007, 45, 4844–4854.

    Article  CAS  Google Scholar 

  38. Yu, P.; Wang, Y.; Yu, J.; Zhu, J.; Hu, Z. Development of novel cardo-containing phenylethynyl-terminated polyimide with high thermal properties. Polym. Adv. Technol. 2017, 28, 222–232.

    Article  CAS  Google Scholar 

  39. Yue, J.; Li, Y.; Zhao, Y.; Xiang, D.; Dai, Y. Thermal degradation behavior of carborane-containing phenylethynyl terminated imide systems. Polym. Degrad. Stabil. 2016, 129, 286–295.

    Article  CAS  Google Scholar 

  40. Wu, Y.; Yang, J.; Chen, G. Synthesis and characterization of a carborane-containing monofunctional imide monomer as a modifier for imide oligomer. High Perform. Polym. 2017, 30, 812–820.

    Article  Google Scholar 

  41. Zhou, D.; Yuan, L.; Hong, W.; Zhang, H.; Hu, A.; Yang, S. Molecular design of interpenetrating fluorinated polyimide network with enhanced high performance for heat-resistant matrix. Polymer 2019, 173, 66–79.

    Article  CAS  Google Scholar 

  42. Liu, Y.; Mo, S.; He, M.; Zhai, L.; Xu, C.; Fan, L. Phenylethynyl-terminated oligoimides based on bis(p-aminophenoxy)dimethyl silane: effect of siloxane structure on processability and thermal stability. High Perform. Polym. 2018, 31, 651–661.

    Article  Google Scholar 

  43. Rao, X.; Zhou, H; Dang, G.; Chen, C.; Wu, Z. New kinds of phenylethynyl-terminated polyimide oligomers with low viscosity and good hydrolytic stability. Polymer 2006, 47, 6091–6098.

    Article  CAS  Google Scholar 

  44. Srinivas, S.; Caputo, F. E.; Graham, M.; Gardner, S.; Davis, R. M.; McGrath, J. E.; Wilkes, G. L. Semicrystalline polyimides based on controlled molecular weight phthalimide end-capped 1,3-bis(4-aminophenoxy)benzene and 3,3′,4,4′-biphenyltetracarboxylic dianhydride: synthesis, crystallization, melting, and thermal stability. Macromolecules 1997, 30, 1012–1022.

    Article  CAS  Google Scholar 

  45. Ratta, V.; Ayambem, A.; McGrath, J. E.; Wilkes, G. L. Crystallization and multiple melting behavior of a new semicrystalline polyimide based on 1,3-bis(4-aminophenoxy)benzene (TPER) and 3,3′,4,4′-biphenonetetracarboxylic dianhydride (BTDA). Polymer 2001, 42, 6173–6186.

    Article  CAS  Google Scholar 

  46. Wu, X.; Yang, X.; Yu, R.; Zhao, X. J.; Zhang, Y.; Huang, W. Highly crosslinked and uniform thermoset epoxy microspheres: preparation and toughening study. Polymer 2018, 143, 145–154.

    Article  CAS  Google Scholar 

  47. Zheng, S.; Mi, Y. Miscibility and intermolecular specific interactions in blends of poly(hydroxyether of bisphenol A) and poly(4-vinyl pyridine). Polymer 2003, 44, 1067–1074.

    Article  CAS  Google Scholar 

  48. Gupta, R. K., in Polymer and Composite Rheology, second edition, Marcel Dekker Inc. New York 2000, p. 58.

    Book  Google Scholar 

  49. Zhuang, Y.; Seong, J. G.; Do, Y. S.; Jo, H. J.; Lee, M. J.; Wang, G.; Guiver, M. D.; Lee, Y. M. Effect of isomerism on molecular packing and gas transport properties of poly(benzoxazole-co-imide)s. Macromolecules 2014, 47, 7947–7957.

    Article  CAS  Google Scholar 

  50. Santiago-García, J. L.; Álvarez, C.; Sánchez, F.; de la Campa, J. G. Gas transport properties of new aromatic polyimides based on 3,8-diphenylpyrene-1,2,6,7-tetracarboxylic dianhydride. J. Membr. Sci. 2015, 476, 442–448.

    Article  Google Scholar 

  51. Borek, J.; Osoba, W. The influence of the plasticization on free volume in polyvinyl chloride. J. Radioanal. Nucl. Chem. 1996, 211, 61–67.

    Article  CAS  Google Scholar 

  52. Larocca, N. M.; Pessan, L. A. Effect of antiplasticisation on the volumetric, gas sorption and transport properties of polyetherimide. J. Membr. Sci. 2003, 218, 69–92.

    Article  CAS  Google Scholar 

  53. Sharma, S. K.; Prakash, J.; Bahadur, J.; Sahu, M.; Mazumder, S.; Pujari, P. K. Free volume and lamellar structure of poly vinyl alcohol-nanosized BaTiO3 composite: positron annihilation and small angle X-ray scattering study. Eur. Polym. J. 2016, 84, 100–110.

    Article  CAS  Google Scholar 

  54. Hrma, P. Arrhenius model for high-temperature glass-viscosity with a constant pre-exponential factor. J. Non-Cryst. Solids 2008, 354, 1962–1968.

    Article  CAS  Google Scholar 

  55. Acierno, D.; Brancaccio, A.; Curto, D.; La Mantia, F. P.; Valenza, A. Molecular weight dependency of rheological characteristics of linear low density polyethylene. J. Rheol. 1985, 29, 323–334.

    Article  CAS  Google Scholar 

  56. Mendelson, R. A. Melt viscosity behavior of some engineering thermoplastics. Polym. Eng. Sci. 1983, 23, 79–85.

    Article  Google Scholar 

  57. Macho, E.; Alegría, A.; Colmenero, J. Determining viscosity temperature behavior of four amorphous thermoplastics using a parallel plate technique. Polym. Eng. Sci. 1987, 27, 810–815.

    Article  CAS  Google Scholar 

  58. Yang, Y.; Fan, L.; Qu, X.; Ji, M.; Yang, S. Fluorinated phenylethynyl-terminated imide oligomers with reduced melt viscosity and enhanced melt stability. Polymer. 2011, 52, 138–148.

    Article  CAS  Google Scholar 

  59. Liu, C.; Qu, C.; Wang, C.; Cao, D.; Wang, D.; Xiao, W.; Feng, H.; Liu, P.; Bai, X. Non-isothermal curing kinetics, chemorheological behaviour, and IR spectral study of two trifunctional phenylethynyl-terminated imide oligomers compared with the corresponding bifunctional structure. Prog. React. Kinet. Mech. 2019, 41, 1–13.

    Article  Google Scholar 

  60. Zhang, D.; Wang, R.; Farhan, S.; Cai, Y.; Liu, J. Chemorheological behaviors of TDE-85 toughened by low viscosity liquid epoxy for RTM process. Polym. Test. 2018, 70, 310–319.

    Article  CAS  Google Scholar 

  61. Roller, M. B. Characterization of the time-temperature-viscosity behavior of curing B-staged epoxy resin. Polym. Eng. Sci. 1975, 15, 406–414.

    Article  CAS  Google Scholar 

  62. Stieghorst, J.; Doll, T. Rheological behavior of PDMS silicone rubber for 3D printing of medical implants. Addit. Manuf. 2018, 24, 217–223.

    CAS  Google Scholar 

  63. Bullions, T. A.; McGrath, J. E.; Loos, A. C. Development of a two-stage, dual-Arrhenius rheology model for a high-performance phenylethynyl-terminated poly(etherimide). Polym. Eng. Sci. 2002, 42, 2182–2192.

    Article  CAS  Google Scholar 

  64. Teresa Rodríguez-Hernández, M.; Angulo-Sánchez, J. L.; Pérez-Chantaco, A. Determination of the molecular characteristics of commercial polyethylenes with different architectures and the relation with the melt flow index. J. Appl. Polym. Sci. 2007, 104, 1572–1578.

    Article  Google Scholar 

  65. Kemblowski, Z.; Torzecki, J. Determination of the weight-average molecular-weight of polyamide-6 on the basis of melt viscosity. Rheol. Acta. 1983, 22, 186–196.

    Article  CAS  Google Scholar 

  66. Lyu, M. Y.; Lee, J. S.; Pae, Y. Study of mechanical and rheological behaviors of linear and branched polycarbonates blends. J. Appl. Polym. Sci. 2001, 80, 1814–1824.

    Article  CAS  Google Scholar 

  67. Langston, J. A.; Colby, R. H.; Chung, T. C. M.; Shimizu, F.; Suzuki, T.; Aoki, M. Synthesis and characterization of long chain branched isotactic polypropylene via metallocene catalyst and T-teagent. Macromolecules 2007, 40, 2712–2720.

    Article  CAS  Google Scholar 

  68. Laius, L. A.; Dergacheva, Y. N.; Bessonov, M. I.; Koton, M. M. The nature of the higher thermal stability of rigid polyimides. Polymer Science U.S.S.R. 1984, 26, 1094–1102.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51803222) and Science and Technology Service Network Initiative, Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-Li Yuan or Shi-Yong Yang.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, WJ., Yuan, LL., Zhang, HY. et al. Phenylethynyl-terminated Imide Oligomers Modified by Reactive Diluent for Resin Transfer Molding Application. Chin J Polym Sci 40, 107–120 (2022). https://doi.org/10.1007/s10118-021-2636-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2636-6

Keywords

Navigation