Skip to main content
Log in

The Anion Binding Affinity Determines the Strength of Anion Specificities of Thermosensitive Polymers

  • Rapid Communication
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

In this work, we demonstrate that the strength of anion specificities of thermosensitive polymers is determined by the affinity of direct anion binding to the polymers. We have prepared a series of thermosensitive statistical copolymers with distinct thermoresponsive behaviors. The anions can specifically interact with the different types of thermosensitive polymers in very different strengths. A similar strength of specific anion effects on thermoresponsive behaviors can be observed at very different salt concentrations for the different types of thermosensitive polymers. A stronger anion binding to the thermosensitive polymers gives rise to a more obvious anion specificity and vice versa. The work presented here opens up opportunities for the application of ion binding affinity to modulate the strength of ion specificities of thermosensitive polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Lo Nostro, P.; Ninham, B. W. Hofmeister phenomena: an update on ion specificity in biology. Chem. Rev. 2012, 112, 2286–2322.

    Article  CAS  PubMed  Google Scholar 

  2. Pinna, M. C.; Bauduin, P.; Touraud, D.; Monduzzi, M.; Ninham, B. W.; Kunz, W. Hofmeister effects in biology: effect of choline addition on the salt-induced super activity of horseradish peroxidase and its implication for salt resistance of plants. J. Phys. Chem. B 2005, 109, 16511–16514.

    Article  CAS  PubMed  Google Scholar 

  3. Pinna, M. C.; Salis, A.; Monduzzi, M.; Ninham, B. W. Hofmeister series: the hydrolytic activity of Aspergillus niger lipase depends on specific anion effects. J. Phys. Chem. B 2005, 109, 5406–5408.

    Article  CAS  PubMed  Google Scholar 

  4. Calero, C.; Faraudo, J.; Bastos-González, D. Interaction of monovalent ions with hydrophobic and hydrophilic colloids: charge inversion and ionic specificity. J. Am. Chem. Soc. 2011, 133, 15025–15035.

    Article  CAS  PubMed  Google Scholar 

  5. Peula-García, J. M.; Ortega-Vinuesa, J. L.; Bastos-González, D. Inversion of Hofmeister series by changing the surface of colloidal particles from hydrophobic to hydrophilic. J. Phys. Chem. C 2010, 114, 11133–11139.

    Article  CAS  Google Scholar 

  6. Dos Santos, A. P.; Levin, Y. Ion specificity and the theory of stability of colloidal suspensions. Phys. Rev. Lett. 2011, 106, 167801.

    Article  PubMed  CAS  Google Scholar 

  7. Liu, L. D.; Kou, R.; Liu, G. M. Ion specificities of artificial macromolecules. Soft Matter 2017, 13, 68–80.

    Article  CAS  Google Scholar 

  8. Liu, G. M. Tuning the properties of charged polymers at the solid/liquid interface with ions. Langmuir 2019, 35, 3232–3247.

    Article  CAS  PubMed  Google Scholar 

  9. Yuan, H. Y.; Liu, G. M. Ionic effects on synthetic polymers: from solutions to brushes and gels. Soft Matter 2020, 16, 4087–4104.

    Article  CAS  PubMed  Google Scholar 

  10. Shechter, I.; Ramon, O.; Portnaya, I.; Paz, Y.; Livney, Y. D. Microcalorimetric study of the effects of a chaotropic salt, KSCN, on the lower critical solution temperature (LCST) of aqueous poly(N-isopropylacrylamide) (PNIPA) solutions. Macromolecules 2010, 43, 480–487.

    Article  CAS  Google Scholar 

  11. He, Z. Y.; Xie, W. J.; Liu, Z. Q.; Liu, G. M.; Wang, Z. W.; Gao, Y. Q.; Wang, J. J. Tuning ice nucleation with counterions on polyelectrolyte brush surfaces. Sci. Adv. 2016, 2, e1600345.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhang, Y. J.; Cremer, P. S. Interactions between macromolecules and ions: the Hofmeister series. Curr. Opin. Chem. Biol. 2006, 10, 658–663.

    Article  CAS  PubMed  Google Scholar 

  13. Magnusson, J. P.; Khan, A.; Pasparakis, G.; Saeed, A. O.; Wang, W. X.; Alexander, C. Ion-sensitive “isothermal” responsive polymers prepared in water. J. Am. Chem. Soc. 2008, 130, 10852–10853.

    Article  CAS  PubMed  Google Scholar 

  14. Heyda, J.; Dzubiella, J. Thermodynamic description of Hofmeister effects on the LCST of thermosensitive polymers. J. Phys. Chem. B 2014, 118, 10979–10988.

    Article  CAS  PubMed  Google Scholar 

  15. Kunz, W.; Henle, J.; Ninham, B. W. ‘Zur Lehre von der Wirkung der Salze’ (about the science of the effect of salts): Franz Hofmeister’s historical papers. Curr. Opin. Colloid Interface Sci. 2004, 9, 19–37.

    Article  CAS  Google Scholar 

  16. Kunz, W.; Lo Nostro, P.; Ninham, B. W. The present state of affairs with Hofmeister effects. Curr. Opin. Colloid Interface Sci. 2004, 9, 1–18.

    Article  CAS  Google Scholar 

  17. Parsons, D. F.; Boström, M.; Lo Nostro, P.; Ninham, B. W. Hofmeister effects: interplay of hydration, nonelectrostatic potentials, and ion size. Phys. Chem. Chem. Phys. 2011, 13, 12352–12367.

    Article  CAS  PubMed  Google Scholar 

  18. Mazzini, V.; Craig, V. S. J. What is the fundamental ion-specific series for anions and cations? Ion specificity in standard partial molar volumes of electrolytes and electrostriction in water and non-aqueous solvents. Chem. Sci. 2017, 8, 7052–7065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mazzini, V.; Craig, V. S. J. Volcano plots emerge from a sea of nonaqueous solvents: the law of matching water affinities extends to all solvents. ACS Cent. Sci. 2018, 4, 1056–1064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Parsons, D. F.; Salis, A. Hofmeister effects at low salt concentration due to surface charge transfer. Curr. Opin. Colloid Interface Sci. 2016, 23, 41–49.

    Article  CAS  Google Scholar 

  21. Parsons, D. F.; Ninham, B. W. Importance of accurate dynamic polarizabilities for the ionic dispersion interactions of alkali halides. Langmuir 2010, 20, 1816–1823.

    Article  CAS  Google Scholar 

  22. Salis, A.; Ninham, B. W. Models and mechanisms of Hofmeister effects in electrolyte solutions, and colloid and protein systems revisited. Chem. Soc. Rev. 2014, 43, 7358–7377.

    Article  CAS  PubMed  Google Scholar 

  23. Salis, A.; Pinna, M. C.; Bilaničová, D.; Monduzzi, M.; Lo Nostro, P.; Ninham, B. W. Specific anion effects on glass electrode pH measurements of buffer solutions: bulk and surface phenomena. J. Phys. Chem. B 2006, 110, 2949–2956.

    Article  CAS  PubMed  Google Scholar 

  24. Salis, A.; Bhattacharyya, M. S.; Monduzzi, M. Specific ion effects on adsorption of lysozyme on functionalized SBA-15 mesoporous silica. J. Phys. Chem. B 2010, 114, 7996–8001.

    Article  CAS  PubMed  Google Scholar 

  25. Shi, K.; Sha, D.; Xu, J. D.; Yang, X.; Wang, B. L.; Pan, Y. X.; Ji, X. L. Hofmeister effect on thermo-responsive poly(N-isopropylacrylamide) hydrogels grafted on macroporous poly(vinyl alcohol) formaldehyde sponges. Chinese J. Polym. Sci. 2020, 38, 257–267.

    Article  CAS  Google Scholar 

  26. Zhang, Y. J.; Furyk, S.; Bergbreiter, D. E.; Cremer, P. S. Specific ion effects on the water solubility of macromolecules: PNIPAM and the Hofmeister series. J. Am. Chem. Soc. 2005, 127, 14505–14510.

    Article  CAS  PubMed  Google Scholar 

  27. Heyda, J.; Okur, H. I.; Hladílková, J.; Rembert, K. B.; Hunn, W.; Yang, T. L.; Dzubiella, J.; Jungwirth, P.; Cremer, P. S. Guanidinium can both cause and prevent the hydrophobic collapse of biomacromolecules. J. Am. Chem. Soc. 2017, 139, 863–870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ji, C. D.; Zhou, C.; Zhao, B. T.; Yang, J. F.; Zhao, J. Effect of counterion binding to swelling of polyelectrolyte brushes. Langmuir 2021, 37, 5554–5562.

    Article  CAS  PubMed  Google Scholar 

  29. Willott, J. D.; Murdoch, T. J.; Humphreys, B. A.; Edmondson, S.; Wanless, E. J.; Webber, G. B. Anion-specific effects on the behavior of pH-sensitive polybasic brushes. Langmuir 2015, 31, 3707–3717.

    Article  CAS  PubMed  Google Scholar 

  30. Kou, R.; Zhang, J.; Wang, T.; Liu, G. M. Interactions between polyelectrolyte brushes and Hofmeister ions: chaotropes versus kosmotropes. Langmuir 2015, 31, 10461–10468.

    Article  CAS  PubMed  Google Scholar 

  31. Tatar Güner, P.; Demirel, A. L. Effect of anions on the cloud point temperature of aqueous poly(2-ethyl-2-oxazoline) solutions. J. Phys. Chem. B 2012, 116, 14510–14514.

    Article  PubMed  CAS  Google Scholar 

  32. Deyerle, B. A.; Zhang, Y. J. Effects of Hofmeister anions on the aggregation behavior of PEO-PPO-PEO triblock copolymers. Langmuir 2011, 27, 9203–9210.

    Article  CAS  PubMed  Google Scholar 

  33. Kou, R.; Zhang, J.; Chen, Z.; Liu, G. M. Counterion specificity of polyelectrolyte brushes: role of specific ion-pairing interactions. ChemPhysChem 2018, 19, 1404–1413.

    Article  CAS  PubMed  Google Scholar 

  34. Ohsugi, A.; Furukawa, H.; Kakugo, A.; Osada, Y.; Gong, J. P. Catch and release of DNA in coacervate-dispersed gels. Macromol. Rapid Commun. 2006, 27, 1242–1246.

    Article  CAS  Google Scholar 

  35. Zhou, X. J.; Lu, H. P.; Kong, L. L.; Zhang, D.; Zhang, W.; Nie, J. J.; Yuan, J. Y.; Du, B. Y.; Wang, X. P. Thermo-sensitive microgels supported gold nanoparticles as temperature-mediated catalyst. Chinese J. Polym. Sci. 2019, 37, 235–242.

    Article  CAS  Google Scholar 

  36. Yang, L. L.; Zhang, J. M.; He, J. S.; Zhang, J.; Gan, Z. H. Synthesis and characterization of temperature-sensitive cellulose-graft-poly(N-isopropylacrylamide) copolymers. Chinese J. Polym. Sci. 2015, 33, 1640–1649.

    Article  CAS  Google Scholar 

  37. Shi, M.; Duan, X. R.; Liu, Z. T.; Liu, Z. W.; Jiang, J. Q. Diethanol ammonium-borate based polybetaine with tunable UCST phase transition. Chinese J. Polym. Sci. 2016, 34, 777–784.

    Article  CAS  Google Scholar 

  38. Lian, L. L.; Liu, L. D.; Ding, Y. W.; Hua, Z.; Liu, G. M. Specific anion effects on charged-neutral random copolymers: interplay between different anion-polymer interactions. Langmuir 2021, 37, 1697–1706.

    Article  CAS  PubMed  Google Scholar 

  39. Lowe, A. B.; McCormick, C. L. Synthesis and solution properties of zwitterionic polymers. Chem. Rev. 2002, 102, 4177–4189.

    Article  CAS  PubMed  Google Scholar 

  40. Wang, T.; Wang, X. W; Long, Y. C.; Liu, G. M.; Zhang, G. Z. Ion-specific conformational behavior of polyzwitterionic brushes: exploiting it for protein adsorption/desorption control. Langmuir 2013, 29, 6588–6596.

    Article  CAS  PubMed  Google Scholar 

  41. Wang, T.; Kou, R.; Liu, H. L.; Liu, L. D.; Zhang, G. Z.; Liu, G. M. Anion specificity of polyzwitterionic brushes with different carbon spacer lengths and its application for controlling protein adsorption. Langmuir 2016, 32, 2698–2707.

    Article  CAS  PubMed  Google Scholar 

  42. Zhu, R. W.; Baraniak, M. K.; Jäkle, F.; Liu, G. M. Anion specificity in dimethyl sulfoxide-water mixtures exemplified by a thermosensitive polymer. J. Phys. Chem. B 2018, 122, 8293–8300.

    Article  CAS  PubMed  Google Scholar 

  43. Collins, K. D. Ions from the Hofmeister series and osmolytes: effects on proteins in solution and in the crystallization process. Methods 2004, 34, 300–311.

    Article  CAS  PubMed  Google Scholar 

  44. Kunz, W. Specific ion effects in colloidal and biological systems. Curr. Opin. Colloid Interface Sci. 2010, 15, 34–39.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21873091, 21622405, 21574121 and 52033001), the Youth Innovation Promotion Association of CAS (No. Y201769), the National Synchrotron Radiation Laboratory (No. UN2018LHJJ), and the Fundamental Research Funds for the Central Universities (No. WK2480000007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-Ming Liu.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lian, LL., Xu, SY., Yuan, HY. et al. The Anion Binding Affinity Determines the Strength of Anion Specificities of Thermosensitive Polymers. Chin J Polym Sci 39, 1351–1356 (2021). https://doi.org/10.1007/s10118-021-2633-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2633-9

Keywords

Navigation