Skip to main content
Log in

Nonlinear Viscoelasticity Raised at Low Temperatures by Intermolecular Cooperation of Bulk Amorphous Polymers

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

We performed dynamic Monte Carlo simulations of stress relaxation in parallel-aligned and uniaxially stretched bulk amorphous polymers at low temperatures. We observed an extra-slowing down in the early stage of stress relaxation, which causes nonlinear viscoelasticity as deviated from Debye relaxation and Arrhenius-fluid behaviors observed previously at high temperatures. Meanwhile, fluctuation analysis of stress relaxation revealed a substantial increase in the stretch fractions of polymers at the transient periods of high-temperature Debye relaxation. Structural analysis of free volume further revealed the scenario that, at low temperatures, the modulus of polymer entropy elasticity decreases with temperature and eventually loses its competition to the imposed modulus (Deborah number becomes larger than one), and hence upon stress relaxation under constant strains, monomers are firstly accumulated nearby two stretching ends of polymers, resulting in tentative global jamming like physical cross-linking there, and thus retarding the coming transient state of stress relaxation. We concluded that intermolecular cooperation raises physical crosslinking for nonlinear viscoelasticity of polymer stress relaxation as well as the rubbery states unique to bulk amorphous polymers. The new microscopic mechanism of the fluid-rubbery transition of polymers may bring insights into the intermolecular cooperation mechanism of glass transition of small molecules, if the fluid-rubbery transition is regarded as an extrapolation of glass transition from low to high molecular weights.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hu, W. B. Polymer physics: a molecular approach. Springer, Wien, 2013.

    Book  Google Scholar 

  2. Ueberreiter, K. The thermal behavior of micro- and macromolecular substances and their modification. Kolloid Z. 1943, 102, 272–291.

    Article  CAS  Google Scholar 

  3. Frenkel, S.; Baranov, V. G. Topomorphism and phase dualism of flexible chain polymers. Brit. Polym. J. 1977, 9, 228–233.

    Article  CAS  Google Scholar 

  4. Boyer, R. F. Dynamics and thermodynamics of the liquid state (T < Tg) of amorphous polymers. J. Macromol. Sci., B: Phys. 1980, 18, 461–553.

    Article  Google Scholar 

  5. Green, M., Tobolsky, A. A new approach to the theory of relaxing polymeric media. J. Chem. Phys. 1946, 14, 80–92.

    Article  CAS  Google Scholar 

  6. Doi, M., Edwards S. The theory of polymer dynamics. Clarendon Press, Oxford, 1986.

    Google Scholar 

  7. Ferry, J. D. Viscoelastic properties of polymers. 3rd Edition, John Wiley and Son, New York, 1980.

    Google Scholar 

  8. Rouse, P. E. A theory of the linear viscoelastic properties of dilute solutions of coiling polymers. J. Chem. Phys. 1953, 108, 4628–4633.

    Article  Google Scholar 

  9. Dealy, J. M.; Larson, R. G. Structure and rheology of molten polymers: from structure to flow behavior. Hanser, Munich, 2006.

    Book  Google Scholar 

  10. Wang, S. Q. Nonlinear polymer rheology: macroscopic phenomenology and molecular foundation. John Wiley & Sons, Hoboken, 2017.

    Book  Google Scholar 

  11. Lodge, A. S. A network theory of flow birefringence and stress in concentrated polymer solutions. Trans. Faraday Soc. 1956, 52, 120–130.

    Article  CAS  Google Scholar 

  12. Meyer, K.H., Susich, G.v. & Valkó, E. Die elastischen Eigenschaften der organischen Hochpolymeren und ihre kinetische Deutung. Kolloid-Zeitschrift 1932, 59, 208–216.

    Article  CAS  Google Scholar 

  13. Wang, J.; Yu, Y.; Guo, Y.; Luo, W.; Hu, W. Local transient jamming in stress relaxation of bulk amorphous polymers. Chinese J. Polym. Sci. 2021, 39, 906–913.

    Article  CAS  Google Scholar 

  14. Wang, J.; Yu, Y.; Guo, Y.; Luo, W.; Hu, W. Roles of repeating-unit interactions in the stress relaxation process of bulk amorphous polymers. Polymer 2021, 224, 123740.

    Article  CAS  Google Scholar 

  15. Hu, W. Structural transformation in the collapse transition of the single flexible homopolymer model. J. Chem. Phys. 1998, 109, 3686–3690.

    Article  CAS  Google Scholar 

  16. Hu, W.; Frenkel, D. Polymer crystallization driven by anisotropic interactions. Adv. Polym. Sci. 2009, 191, 1–35.

    Google Scholar 

  17. Nie, Y. J.; Gao, H. H.; Yu, M. H.; Hu, Z. M.; Reiter, G.; Hu, W. B. Competition of crystal nucleation to fabricate the oriented semi-crystalline polymers. Polymer 2013, 54, 3402–3407.

    Article  CAS  Google Scholar 

  18. Maxwell, J. C. On the dynamical theory of gases. Philosophical Transactions of the Royal Society of London 1867, 157, 49–88.

    Article  Google Scholar 

  19. Debye, P. Einige resultate einer kinetischen theorie der isolatoren. Phys. Z. 1912, 13, 97–100.

    CAS  Google Scholar 

  20. Einstein, A. On the movement of small particles suspended in stationary liquids required by the molecular-kinetic theory of heat. Ann. Phys. 1905, 17, 549–560.

    Article  CAS  Google Scholar 

  21. Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A. H.; Teller, E. Equations of state calculations by fast computing machines. J. Chem. Phys. 1993, 21, 1087–1092.

    Article  Google Scholar 

  22. Arrhenius, S. Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Z. Phys. Chem. 1889, 4, 226–248.

    Article  Google Scholar 

  23. See Chandler, D. Introduction to modern statistical mechanics, Oxford University Press, Oxford, 1987.

    Google Scholar 

  24. Reiner, M. The deborah number. Phys. Today 1964, 17, 62.

    Article  Google Scholar 

Download references

Acknowledgments

The financial support from the National Natural Science Foundation of China (No. 21734005), Program for Changjiang Scholars and Innovative Research Teams (No. IRT1252) and the CAS Interdisciplinary Innovation Team was appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Bing Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, JP., Hu, WB. Nonlinear Viscoelasticity Raised at Low Temperatures by Intermolecular Cooperation of Bulk Amorphous Polymers. Chin J Polym Sci 39, 1496–1501 (2021). https://doi.org/10.1007/s10118-021-2624-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2624-x

Keywords

Navigation