Skip to main content
Log in

A Unified Theoretical Treatment on Statistical Properties of the Semi-batch Self-condensing Vinyl Polymerization System

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

We present a novel generating function (GF) method for the self-condensing vinyl polymerization (SCVP) system with any initial distribution of preexisted polymers. Such a method was proven to be especially useful to investigate the semi-batch SCVP system allowing a sequence of feeding operations during the polymerization. Consequently, the number-, weight-, and z-average molecular weights as well as dispersity index of hyperbranched polymers can be explicitly given, which are determined by predetermined feeding details and conversions in each polymerization step. These analytical results are further confirmed by the corresponding Monte Carlo simulations. Therefore, the present GF method has provided a unified treatment to the semi-batch SCVP system. Accordingly, hyperbranched polymers with desired properties can be prepared by designing feeding details and presetting conversions at each step based on the present GF method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tomalia, D. A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. Dendritic macromolecules: synthesis of starburst dendrimers. Macromolecules 1986, 19, 2466–2468.

    Article  CAS  Google Scholar 

  2. Kim, Y. H.; Webster, O. W. Water soluble hyperbranched polyphenylene: “a unimolecular micelle?” J. Am. Chem. Soc. 1990, 112, 4592–4593.

    Article  CAS  Google Scholar 

  3. Fréchet, J. M. J.; Henmi, M.; Gitsov, I.; Aoshima, S.; Leduc, M. R.; Grubbs, R. B. Self-condensing vinyl polymerization: an approach to dendritic materials. Science 1995, 269, 1080–1083.

    Article  PubMed  Google Scholar 

  4. Gao, C.; Yan, D. Y. Hyperbranched polymers: from synthesis to applications. Prog. Polym. Sci. 2004, 29, 183–275.

    Article  CAS  Google Scholar 

  5. Voit, B. I.; Lederer, A. Hyperbranched and highly branched polymer architectures-synthetic strategies and major characterization aspects. Chem. Rev. 2009, 109, 5924–5973.

    Article  CAS  PubMed  Google Scholar 

  6. Gao, C.; Yan, D. Y.; Frey, H. Hyperbranched polymers: synthesis, properties, and applications. John Wiley, Inc.: Hoboken, 2011.

    Google Scholar 

  7. Zheng, Y. C.; Li, S. P.; Weng, Z. L.; Gao, C. Hyperbranched polymers: advances from synthesis to applications. Chem. Soc. Rev. 2015, 44, 4091–4130.

    Article  CAS  PubMed  Google Scholar 

  8. Flory, P. J. Molecular size distribution in three dimensional polymers. VI. Branched polymers containing A-R-Bf−1 type units. J. Am. Chem. Soc. 1952, 74, 2718–2723.

    Article  CAS  Google Scholar 

  9. Matyjaszewski, K.; Gaynor, S. G.; Kulfan, A.; Podwika, M. Preparation of hyperbranched polyacrylates by atom transfer radical polymerization. 1. Acrylic AB* monomers in “living” radical polymerizations. Macromolecules 1997, 30, 5192–5194.

    Article  CAS  Google Scholar 

  10. Matyjaszewski, K.; Gaynor, S. G.; Müller, A. H. E. Preparation of hyperbranched polyacrylates by atom transfer radical polymerization. 2. Kinetics and mechanism of chain growth for the self-condensing vinyl polymerization of 2-((2-bromopropionyl)oxy)ethyl acrylate. Macromolecules 1997, 30, 7034–7041.

    Article  CAS  Google Scholar 

  11. Simon, P. F. W.; Radke, W.; Müller, A. H. E. Hyperbranched methacrylates by self-condensing group transfer polymerization. Macromol. Rapid Commun. 1997, 18, 865–873.

    Article  CAS  Google Scholar 

  12. Simon, P. F. W.; Müller, A. H. E. Kinetic investigation of self-condensing group transfer polymerization. Macromolecules 2004, 37, 7548–7558.

    Article  CAS  Google Scholar 

  13. Dong, B. T.; Dong, Y. Q.; Du, F. S.; Li, Z. C. Controlling polymer topology by atom transfer radical self-condensing vinyl polymerization of p-(2-bromoisobutyloylmethyl)styrene. Macromolecules 2010, 43, 8790–8798.

    Article  CAS  Google Scholar 

  14. Pugh, C.; Singh, A.; Samuel, R.; Bernal Ramos, K. M. Synthesis of hyperbranched polyacrylates by a chloroinimer approach. Macromolecules 2010, 43, 5222–5232.

    Article  CAS  Google Scholar 

  15. Simon, P. F. W.; Müller, A. H. E. Synthesis of hyperbranched and highly branched methacrylates by self-condensing group transfer copolymerization. Macromolecules 2001, 34, 6206–6213.

    Article  CAS  Google Scholar 

  16. Hong, C. Y.; Pan, C. Y.; Huang, Y.; Xu, Z. D. Synthesis and characterization of hyperbranched polyacrylates in the presence of a tetrafunctional initiator with higher reactivity than monomer by self-condensing vinyl polymerization. Polymer 2001, 42, 6733–6740.

    Article  CAS  Google Scholar 

  17. Hong, C. Y.; Pan, C. Y. Synthesis and characterization of hyperbranched polyacrylates in the presence of a tetrafunctional initiator with higher reactivity than monomer by self-condensing vinyl polymerization. Polymer 2001, 42, 9385–9391.

    Article  CAS  Google Scholar 

  18. Georgi, U.; Erber, M.; Stadermann, J.; Abulikemu, M.; Komber, H.; Lederer, A.; Voit, B. New approaches to hyperbranched poly(4-chloromethylstyrene) and introduction of various functional end groups by polymer-analogous reactions. J. Polym. Sci., Part A: Polym. Chem. 2010, 48, 2224–2235.

    Article  CAS  Google Scholar 

  19. Lu, Y.; Nemoto, T.; Tosaka, M.; Yamago, S. Synthesis of structurally controlled hyperbranched polymers using a monomer having hierarchical reactivity. Nat. Commun. 2017, 8, 1863.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Mori, H.; Seng, D. C.; Lechner, H.; Zhang, M.; Müller, A. H. E. Synthesis and characterization of branched polyelectrolytes. Preparation of hyperbranched poly(acrylic acid) via self-condensing atom transfer radical copolymerization. Macromolecules 2002, 35, 9270–9281.

    Article  CAS  Google Scholar 

  21. Mori, H.; Walther, A.; André, X.; Lanzendörfer, M. G.; Müller, A. H. E. Synthesis of highly branched cationic polyelectrolytes via self-condensing atom transfer radical copolymerization with 2-(diethylamino)ethyl methacrylate. Macromolecules 2004, 37, 2054–2066.

    Article  CAS  Google Scholar 

  22. Muthukrishnan, S.; Jutz, G.; Andre, X.; Mori, H.; Müller, A. H. E. Synthesis of hyperbranched glycopolymers via self-condensing atom transfer radical copolymerization of a sugar-carrying acrylate. Macromolecules 2005, 38, 9–18.

    Article  CAS  Google Scholar 

  23. Muthukrishnan, S.; Mori, H.; Müller, A. H. E. Synthesis and characterization of methacrylate-type hyperbranched glycopolymers via self-condensing atom transfer radical copolymerization. Macromolecules 2005, 38, 3108–3119.

    Article  CAS  Google Scholar 

  24. Liu, Q.; Xiong, M.; Cao, M.; Chen, Y. Preparation of branched polyacrylonitrile through self-condensing vinyl copolymerization. J. Appl. Polym. Sci. 2008, 110, 494–500.

    Article  CAS  Google Scholar 

  25. Aydogan, C.; Ciftci, M.; Yagci, Y. Hyperbranched polymers by type II photoinitiated self-condensing vinyl polymerization. Macromol. Rapid Commun. 2016, 37, 650–654.

    Article  CAS  PubMed  Google Scholar 

  26. Muthukrishnan, S.; Erhard, D. P.; Mori, H.; Müller, A. H. E. Synthesis and characterization of surface-grafted hyperbranched glycomethacrylates. Macromolecules 2006, 39, 2743–2750.

    Article  CAS  Google Scholar 

  27. Yang, H.; Wang, Z.; Cao, L.; Huang, W.; Jiang, Q.; Xue, X.; Song, Y.; Jiang, B. Self-condensing reversible complexation-mediated copolymerization for highly branched polymers with in situ formed inimers. Polym. Chem. 2017, 8, 6844–6852.

    Article  CAS  Google Scholar 

  28. Aydogan, C.; Ciftci, M.; Kumbaraci, V.; Talinli, N.; Yagci, Y. Hyperbranced polymers by photoinduced self-condensing vinyl polymerization using bisbenzodioxinone. Macromol. Chem. Phys. 2017, 218, 1700045.

    Article  CAS  Google Scholar 

  29. Alfurhood, J. A.; Bachler, P. R.; Sumerlin, B. S. Hyperbranched polymers via RAFT self-condensing vinyl polymerization. Polym. Chem. 2016, 7, 3361–3369.

    Article  CAS  Google Scholar 

  30. Müller, A. H. E.; Yan, D. Y.; Wulkow, M. Molecular parameters of hyperbranched polymers made by self-condensing vinyl polymerization. 1. Molecular weight distribution. Macromolecules 1997, 30, 7015–7023.

    Article  Google Scholar 

  31. Yan, D. Y.; Müller, A. H. E.; Matyjaszewski, K. Molecular parameters of hyperbranched polymers made by self-condensing vinyl polymerization. 2. Degree of branching. Macromolecules 1997, 30, 7024–7033.

    Article  CAS  Google Scholar 

  32. Radke, W.; Litvinenko, G.; Müller, A. H. E. Effect of core-forming molecules on molecular weight distribution and degree of branching in the synthesis of hyperbranched polymers. Macromolecules 1998, 31, 239–248.

    Article  CAS  Google Scholar 

  33. Yan, D. Y.; Zhou, Z. P.; Müller, A. H. E. Molecular weight distribution of hyperbranched polymers generated by self-condensing vinyl polymerization in presence of a multifunctional initiator. Macromolecules 1999, 32, 245–250.

    Article  CAS  Google Scholar 

  34. Litvinenko, G. I.; Simon, P. F. W.; Müller, A. H. E. Molecular parameters of hyperbranched copolymers obtained by self-condensing vinyl copolymerization. 1. Equal rate constants. Macromolecules 1999, 32, 2410–2419.

    Article  CAS  Google Scholar 

  35. Litvinenko, G. I.; Simon, P. F. W.; Müller, A. H. E. Molecular parameters of hyperbranched copolymers obtained by self-condensing vinyl copolymerization. 2. Non-equal rate constants. Macromolecules 2001, 34, 2418–2426.

    Article  CAS  Google Scholar 

  36. Litvinenko, G. I.; Müller, A. H. E. Molecular weight averages and degree of branching in self-condensing vinyl copolymerization in the presence of multifunctional initiators. Macromolecules 2002, 35, 4577–4583.

    Article  CAS  Google Scholar 

  37. Cheng, K. C. Kinetic model of hyperbranched polymers formed by self-condensing vinyl polymerization of AB* monomers in the presence of multifunctional core molecules with different reactivities. Polymer 2003, 44, 877–882.

    Article  CAS  Google Scholar 

  38. He, X. H.; Liang, H. J.; Pan, C. Y. Monte Carlo simulation of hyperbranched copolymerizations in the presence of a multifunctional initiator. Macromol. Theor. Simul. 2001, 10, 196–203.

    Article  CAS  Google Scholar 

  39. He, X. H.; Liang, H. J.; Pan, C. Y. Self-condensing vinyl polymerization in the presence of a multifunctional initiator with unequal rate constant: Monte Carlo simulation. Polymer 2003, 44, 6697–6706.

    Article  CAS  Google Scholar 

  40. Zhou, Z. P.; Yan, D. Y. A general model for the kinetics of self-condensing vinyl polymerization. Macromolecules 2008, 41, 4429–4434.

    Article  CAS  Google Scholar 

  41. Zhou, Z. P.; Yan, D. Y. Effect of multifunctional initiator on self-condensing vinyl polymerization with nonequal molar ratio of stimulus to monomer. Macromolecules 2009, 42, 4047–4052.

    Article  CAS  Google Scholar 

  42. Zhao, Z. F.; Wang, H. J.; Ba, X. W. A statistical theory for self-condensing vinyl polymerization. J. Chem. Phys. 2009, 131, 074101.

    Article  PubMed  CAS  Google Scholar 

  43. Zhao, Z. F.; Wang, H. J.; Ba, X. W. Statistical properties for the self-condensing vinyl polymerization in presence of multifunctional core initiators. Polymer 2011, 52, 854–865.

    Article  CAS  Google Scholar 

  44. Zhou, Z. P.; Wang, G. J.; Yan, D. Y. Kinetic analysis of self-condensing vinyl polymerization with unequal reactivities. Chin. Sci. Bull. 2008, 53, 3516–3521.

    CAS  Google Scholar 

  45. Hong, X. Z.; Zhao, Z. F.; Wang, H. J.; Ba, X. W. The radius of gyration for a ternary self-condensing vinyl polymerization system. Sci. China Chem. 2015, 58, 1875–1863.

    Article  CAS  Google Scholar 

  46. Tobita, H. Markovian approach to self-condensing vinyl polymerization: distributions of molecular weights, degrees of branching, and molecular dimensions. Macromol. Theor. Simul. 2015, 24, 117–132.

    Article  CAS  Google Scholar 

  47. Tobita, H. Hyperbranched polymers formed through self-condensing vinyl polymerization in a continuous stirred-tank reactor: 1. Molecular weight distribution. Macromol. Theor. Simul. 2018, 27, 1800027.

    Article  CAS  Google Scholar 

  48. Tobita, H. Hyperbranched polymers formed through self-condensing vinyl polymerization in a continuous stirred-tank reactor: 2. Branched architecture. Macromol. Theor. Simul. 2018, 27, 1800028.

    Article  CAS  Google Scholar 

  49. Tobita, H. Detailed structural analysis of the hyperbranched polymers formed in self-condensing vinyl polymerization. Macromol. Theor. Simul. 2019, 28, 1800061.

    Article  CAS  Google Scholar 

  50. Cheng, K. C. Effect of feed rate on structure of hyperbranched polymers formed by stepwise addition of AB2 monomers into multifunctional cores. Polymer 2003, 44, 1259–1266.

    Article  CAS  Google Scholar 

  51. Cheng, K. C.; Chuang, T. H.; Chang, J. S.; Guo, W. J.; Su, W. F. Effect of feed rate on structure of hyperbranched polymers formed by self-condensing vinyl polymerization in semibatch reactor. Macromolecules 2005, 38, 8252–8257.

    Article  CAS  Google Scholar 

  52. Wang, R.; Luo, Y. W.; Li, B. G.; Sun, X. Y.; Zhu, S. P. Design and control of copolymer composition distribution in living radical polymerization using semi-batch feeding policies: a model simulation. Macromol. Theor. Simul. 2006, 15, 356.

    Article  CAS  Google Scholar 

  53. Wang, W. J.; Wang, D. M.; Li, B. G.; Zhu S. P. Synthesis and characterization of hyperbranched polyacrylamide using semibatch reversible addition-fragmentation chain transfer (RAFT) polymerization. Macromolecules 2010, 43, 40624069.

    Google Scholar 

  54. Wang, D. M.; Li, X. H.; Wang, W. J.; Gong, X.; Li, B. G.; Zhu, S. P. Kinetics and modeling of semi-batch RAFT copolymerization with hyperbranching. Macromolecules 2012, 45, 28–38.

    Article  CAS  Google Scholar 

  55. Wang, D. M.; Wang, W. J.; Li, B. G.; Zhu, S. P. Semibatch RAFT polymerization for branched polyacrylamide production: effect of divinyl monomer feeding policies. AICHE J. 2013, 59, 1322–1333.

    Article  CAS  Google Scholar 

  56. Cheng, K. C. Effect of feed rate of monofunctional monomers on structure of hyperbranched copolymers formed by self-condensing vinyl copolymerization in semibatch reactor. Eur. Polym. J. 2014, 60, 98–105.

    Article  CAS  Google Scholar 

  57. Ilchev, A.; Pfukwa, R.; Hlalele, L.; Smit, M.; Klumperman, B. Improved control through a semi-batch process in RAFT-mediated polymerization utilizing relatively poor leaving groups. Polym. Chem. 2015, 6, 7945–7948.

    Article  CAS  Google Scholar 

  58. Cheng, K. C.; Lai, W. J. Effect of feed rate of end-capping molecules on structure of hyperbranched polymers formed from monomers A2 and B4 in semibatch process. Eur. Polym. J. 2017, 89, 339–348.

    Article  CAS  Google Scholar 

  59. Burgers, J. M. The nonlinear diffusion equation. Springer: Dordrecht, 1974.

    Book  Google Scholar 

  60. Logan, J. D. An introduction to nonlinear partial differential equations. John Wiley & Sons, Inc.: New Jersey, 2008.

    Google Scholar 

  61. Stanley, R. P. Enumerative combinatorics. Cambridge University Press: New York, 1999.

    Book  Google Scholar 

  62. Kantorovich, L. Mathematics for natural scientists II: advanced methods. Springer: Switzerland, 2016.

    Book  Google Scholar 

  63. Yang, Y. L.; Zhang, H. D. Monte Carlo methods in polymer science. Fudan University Press: Shanghai, 1993.

    Google Scholar 

  64. Gillespie, D. T. Stochastic simulation of chemical kinetics. Annu. Rev. Phys. Chem. 2007, 58, 35–55.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Project for Talent Engineering of Hebei Province (No. A2016015001). Dr. Gu is gratefully acknowledged the Project for Top Young Talent of Hebei Province and that for general colleges of Hebei Province (No. BJ2017017).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Zhong Hong or Hai-Jun Wang.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, F., Li, JT., Hong, XZ. et al. A Unified Theoretical Treatment on Statistical Properties of the Semi-batch Self-condensing Vinyl Polymerization System. Chin J Polym Sci 39, 1510–1520 (2021). https://doi.org/10.1007/s10118-021-2603-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2603-2

Keywords

Navigation