Skip to main content
Log in

Tuning the Johari-Goldstein β-Relaxation and Its Separation from α-Relaxation of Poly(n-alkyl methacrylate)s by Small Molecule-bridged Hydrogen Bonds

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Introducing small molecule-bridged hydrogen bonds (HBs) between polymer chains has been reported to effectively reduce the interchain cooperativity despite of strengthening the intermolecular interaction. Here, a systematic investigation on tuning the Johari-Goldstein β (βJG) relaxation by adding various low-molecular-weight phenols in poly(n-alkyl methacrylate)s is carried out to further clarify the anomalous dynamics. Given these small molecules capable of coupling the motion with pendent groups of host polymers due to forming at least two HBs per molecule, poly(n-alkyl methacrylate) mixtures exhibit rich dynamic changes in the βJG-properties and α, βJG separations. An increased loading of phenols with a small size and strong inter-HB strength (Δυi) clearly benefits for significant retardation and suppression of the βJG-relaxation, narrows the α, βJG separation and converges the βJG-peak with the α-peak, which demonstrates the alleviation of inter-chain topological constraints. However, small molecules with a relatively big size and weak Δυi are found to amplify the magnitude of the α, βJG separation of poly(butyl methacrylate), even though experimental results of changes in α-dispersion and dynamic fragility confirm a reduction of the coupling factor n in all of these hybrids. The counterintuitive phenomenon suggests that the crossover time tc in the Coupling Model is no longer a universal quantity if the inter-chain interaction of polymers is strengthened by HBs. These compelling findings shed vital insights into the HB-induced anomalous dynamics, and provide essential guidance for tailoring the βJG behavior and designing glassy polymeric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ribelles, J. G.; Duenas, J. M.; Pradas, M. M. Dielectric relaxations in poly(methyl acrylate), poly(ethyl acrylate), and poly(butyl acrylate). J. Appl. Polym. Sci. 1989, 38, 1145–1157.

    Article  Google Scholar 

  2. Shi, G.; Liu, Y.; Wu, G. βfast Relaxation governs the damping stability of acrylic polymer/hindered phenol hybrids. Macromolecules 2020, 53, 4692–4703.

    Article  CAS  Google Scholar 

  3. Johari, G. P.; Goldstein, M. Viscous liquids and the glass transition. II. Secondary relaxations in glasses of rigid molecules. J. Chem. Phys. 1970, 53, 2372–2388.

    Article  CAS  Google Scholar 

  4. Johari, G. P.; Goldstein, M. Viscous liquids and the glass transition. III. Secondary relaxations in aliphatic alcohols and other nonrigid molecules. J. Chem. Phys. 1971, 55, 4245–4252.

    Article  CAS  Google Scholar 

  5. Molinero, V.; Goddard III, W. A. Microscopic mechanism of water diffusion in glucose glasses. Phys. Rev. Lett. 2005, 95, 045701.

    Article  PubMed  CAS  Google Scholar 

  6. Guo, J. H. A theoretical and experimental study of additive effects of physical aging and antiplasticization on the water permeability of polymer film coatings. J. Pharm. Sci. 1994, 83, 447–449.

    Article  CAS  PubMed  Google Scholar 

  7. Burgess, S. K.; Lee, J. S.; Mubarak, C. R.; Kriegel, R. M.; Koros, W. J. Caffeine antiplasticization of amorphous poly(ethylene terephthalate): effects on gas transport, thermal, and mechanical properties. Polymer 2015, 65, 34–44.

    Article  CAS  Google Scholar 

  8. Light, R. R.; Seymour, R. W. Effect of sub-Tg relaxations on the gas transport properties of polyesters. Polym. Eng. Sci. 1982, 22, 857–864.

    Article  CAS  Google Scholar 

  9. Priestley, R. D.; Rittigstein, P.; Broadbelt, L. J.; Fukao, K.; Torkelson, J. M. Evidence for the molecular-scale origin of the suppression of physical ageing in confined polymer: fluorescence and dielectric spectroscopy studies of polymer-silica nanocomposites. J. Phys.: Condens. Matter 2007, 19, 205120.

    Google Scholar 

  10. Shamblin, S. L.; Tang, X.; Chang, L.; Hancock, B. C.; Pikal, M. J. Characterization of the time scales of molecular motion in pharmaceutically important glasses. J. Phys. Chem. B 1999, 103, 4113–4121.

    Article  CAS  Google Scholar 

  11. Johari, G.; Kim, S.; Shanker, R. M. Dielectric relaxation and crystallization of ultraviscous melt and glassy states of aspirin, ibuprofen, progesterone, and quinidine. J. Pharm. Sci. 2007, 96, 1159–1175.

    Article  CAS  PubMed  Google Scholar 

  12. Vyazovkin, S.; Dranca, I. Physical stability and relaxation of amorphous indomethacin. J. Phys. Chem. B 2005, 109, 18637–18644.

    Article  CAS  PubMed  Google Scholar 

  13. Yu, H.; Wang, W.; Bai, H.; Wu, Y.; Chen, M. Relating activation of shear transformation zones to β relaxations in metallic glasses. Phys. Rev. B 2010, 81, 220201.

    Article  CAS  Google Scholar 

  14. Wang, Q.; Zhang, S.; Yang, Y.; Dong, Y.; Liu, C.; Lu, J. Unusual fast secondary relaxation in metallic glass. Nat. Commun. 2015, 6, 1–6.

    Google Scholar 

  15. Zhao, Z.; Wen, P.; Wang, W.; Shek, C. Observation of secondary relaxation in a fragile Pd40Ni10Cu30P20 bulk metallic glass. Appl. Phys. Lett. 2006, 89, 071920.

    Article  CAS  Google Scholar 

  16. Yu, H.; Samwer, K.; Wang, W.; Bai, H. Chemical influence on β-relaxations and the formation of molecule-like metallic glasses. Nat. Commun. 2013, 4, 2204.

    Article  PubMed  CAS  Google Scholar 

  17. Zhao, Z.; Wen, P.; Shek, C.; Wang, W. Measurements of slow β-relaxations in metallic glasses and supercooled liquids. Phys. Rev. B 2007, 75, 174201.

    Article  CAS  Google Scholar 

  18. Yu, H.; Samwer, K.; Wu, Y.; Wang, W. Correlation between β relaxation and self-diffusion of the smallest constituting atoms in metallic glasses. Phys. Rev. Lett. 2012, 109, 095508.

    Article  CAS  PubMed  Google Scholar 

  19. Zhu, Z.; Li, Y.; Wang, Z.; Gao, X.; Wen, P.; Bai, H.; Ngai, K. L.; Wang, W. Compositional origin of unusual β-relaxation properties in La-Ni-Al metallic glasses. J. Chem. Phys. 2014, 141, 084506.

    Article  CAS  PubMed  Google Scholar 

  20. Stachurski, Z. Micromechanics of stress relaxation in amorphous glassy PMMA. Part I. Molecular model for anelastic behaviour. Polymer 2002, 43, 7419–7427.

    Article  CAS  Google Scholar 

  21. Pfister, L.; Stachurski, Z. Micromechanics of stress relaxation in amorphous glassy PMMA part II: application of the RT model. Polymer 2002, 43, 7409–7417.

    Article  Google Scholar 

  22. Wind, M.; Graf, R.; Renker, S.; Spiess, H. W. Structural reasons for restricted backbone motion in poly (n-alkyl methacrylates): degree of polymerization, tacticity and side-chain length. Macromol. Chem. Phys. 2005, 206, 142–156.

    Article  CAS  Google Scholar 

  23. Shahin Thayyil, M.; Ngai, K. L.; Prevosto, D.; Capaccioli, S. Revealing the rich dynamics of glass-forming systems by modification of composition and change of thermodynamic conditions. J. Non-Cryst. Solids 2015, 407, 98–105.

    Article  CAS  Google Scholar 

  24. de Deus, J. F.; Souza, G. P.; Corradini, W. A.; Atvars, T. D.; Akcelrud, L. Relaxations of poly(methyl methacrylate) probed by covalently attached anthryl groups. Macromolecules 2004, 37, 6938–6944.

    Article  CAS  Google Scholar 

  25. Talhavini, M.; Atvars, T. D. Z.; Schurr, O.; Weiss, R. G. Translocation of fluorescent probes upon stretching low-density polyethylene films. Comparison between ‘free’ and covalently-attached anthryl groups. Polymer 1998, 39, 3221–3232.

    Article  CAS  Google Scholar 

  26. Casalini, R.; Snow, A.; Roland, C. Temperature dependence of the Johari-Goldstein relaxation in poly(methyl methacrylate) and poly(thiomethyl methacrylate). Macromolecules 2012, 46, 330–334.

    Article  CAS  Google Scholar 

  27. Casalini, R.; Roland, C. Effect of crosslinking on the secondary relaxation in polyvinylethylene. J. Polym. Sci., Part B: Polym. Phys. 2010, 48, 582–587.

    Article  CAS  Google Scholar 

  28. Redondo-Foj, B.; Sanchis, M. J.; Ortiz-Serna, P.; Carsí, M.; García, J. M.; García, F. C. The effect of cross-linking on the molecular dynamics of the segmental and β Johari-Goldstein processes in polyvinylpyrrolidone-based copolymers. Soft Matter 2015, 11, 7171–7180.

    Article  CAS  PubMed  Google Scholar 

  29. Redondo-Foj, B.; Carsi, M.; Ortiz-Serna, P.; Sanchis, M.; Vallejos, S.; García, F.; García, J. Effect of the dipole-dipole interactions in the molecular dynamics of poly(vinylpyrrolidone)-based copolymers. Macromolecules 2014, 47, 5334–5346.

    Article  CAS  Google Scholar 

  30. Kahle, S.; Korus, J.; Hempel, E.; Unger, R.; Höring, S.; Schröter, K.; Donth, E. Glass-Transition Cooperativity Onset in a Series of Random copolymers poly(n-butyl methacrylate-stat-styrene). Macromolecules 1997, 30, 7214–7223.

    Article  CAS  Google Scholar 

  31. Lorthioir, C.; Alegria, A.; Colmenero, J. Out of equilibrium dynamics of poly(vinyl methyl ether) segments in miscible poly(styrene)-poly(vinyl methyl ether) blends. Phys. Rev. E 2003, 68, 031805.

    Article  CAS  Google Scholar 

  32. Bedrov, D.; Smith, G. D. A molecular dynamics simulation study of relaxation processes in the dynamical fast component of miscible polymer blends. Macromolecules 2005, 38, 10314–10319.

    Article  CAS  Google Scholar 

  33. Blochowicz, T.; Rössler, E. Beta relaxation versus high frequency wing in the dielectric spectra of a binary molecular glass former. Phys. Rev. Lett. 2004, 92, 225701.

    Article  CAS  PubMed  Google Scholar 

  34. Ngai, K. L. Relaxation and diffusion in complex systems. Springer New York: 2011, p.232–247.

    Book  Google Scholar 

  35. Capaccioli, S.; Paluch, M.; Prevosto, D.; Wang, L.; Ngai, K. L. Many-body nature of relaxation processes in glass-forming systems. J. Phys. Chem. Lett. 2012, 3, 735–743.

    Article  CAS  PubMed  Google Scholar 

  36. Ngai, K. L. Coupling model explanation of salient dynamic properties of glass-forming substances. IEEE T. Dielect. El. In. 2001, 8, 329–344.

    Article  CAS  Google Scholar 

  37. Ngai, K. L.; Rendell, R. W. Cooperative dynamics in relaxation: a coupling model perspective. J. Mol. Liq. 1993, 56, 199–214.

    Article  CAS  Google Scholar 

  38. Alvarez, F.; Alegra, A.; Colmenero, J. Relationship between the time-domain Kohlrausch-Williams-Watts and frequency-domain Havriliak-Negami relaxation functions. Phys. Rev. B 1991, 44, 7306–7312.

    Article  CAS  Google Scholar 

  39. Ngai, K. L.; Gopalakrishnan, T. R.; Beiner, M. Relaxation in poly(alkyl methacrylate)s: Change of intermolecular coupling with molecular structure, tacticity, molecular weight, copolymerization, crosslinking, and nanoconfinement. Polymer 2006, 47, 7222–7230.

    Article  CAS  Google Scholar 

  40. Roland, C.; Ngai, K. L. Constraint dynamics and chemical structure. J. Non-Cryst. Solids 1994, 172, 868–875.

    Article  Google Scholar 

  41. Pan, D.; Sun, Z. Influence of chain stiffness on the dynamical heterogeneity and fragility of polymer melts. J. Chem. Phys. 2018, 149, 234904.

    Article  PubMed  CAS  Google Scholar 

  42. Shinyashiki, N.; Spanoudaki, A.; Yamamoto, W.; Nambu, E.; Yoneda, K.; Kyritsis, A.; Pissis, P.; Kita, R.; Yagihara, S. Segmental relaxation of hydrophilic poly(vinylpyrrolidone) in chloroform studied by broadband dielectric spectroscopy. Macromolecules 2011, 44, 2140–2148.

    Article  CAS  Google Scholar 

  43. Alegria, A.; Colmenero, J.; Ngai, K. L.; Roland, C. Observation of the component dynamics in a miscible polymer blend by dielectric and mechanical spectroscopies. Macromolecules 1994, 27, 4486–4492.

    Article  CAS  Google Scholar 

  44. Meier, G.; Vlassopoulos, D.; Fytas, G. Phase Separation and Glass Transition Intervention in a Polymer Blend. EPL 1995, 30, 325–330.

    Article  CAS  Google Scholar 

  45. Park, H.; Bradley, P.; Greisen, P.; Liu, Y.; Mulligan, V. K.; Kim, D. E.; Baker, D.; DiMaio, F. Simultaneous optimization of biomolecular energy functions on features from small molecules and macromolecules. J. Chem. Theory Comput. 2016, 12, 6201–6212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cui, W.; Li, J.; Decher, G. Self-Assembled Smart Nanocarriers for Targeted Drug Delivery. Adv. Mater. 2016, 28, 1302–1311.

    Article  CAS  PubMed  Google Scholar 

  47. Cordier, P.; Tournilhac, F.; Soulié-Ziakovic, C.; Leibler, L. Self-healing and thermoreversible rubber from supramolecular assembly. Nature 2008, 451, 977–980.

    Article  CAS  PubMed  Google Scholar 

  48. Weis, P.; Wu, S. Light-switchable azobenzene-containing macromolecules: from UV to near infrared. Macromol. Rapid Commun. 2018, 39, 1700220.

    Article  CAS  Google Scholar 

  49. Kuang, X.; Zhou, Y.; Shi, Q.; Wang, T.; Qi, H. J. Recycling of epoxy thermoset and composites via good solvent assisted and small molecules participated exchange reactions. ACS Sustain. Chem. Eng. 2018, 6, 9189–9197.

    Article  CAS  Google Scholar 

  50. Lin, Y.; Xu, C.; Guan, A.; Wu, G. Tailoring the temperature-dependent viscoelastic behavior of acrylic copolymers by introducing hydrogen bonding interactions. Polymer 2019, 161, 190–196.

    Article  CAS  Google Scholar 

  51. Shi, G.; Yin, X.; Wu, G. Thermodynamic phase analysis of acrylic polymer/hindered phenol hybrids: effects of hydrogen bonding strength. Polymer 2018, 153, 317–324.

    Article  CAS  Google Scholar 

  52. Yin, X.; Liu, C.; Lin, Y.; Guan, A.; Wu, G. Influence of hydrogen bonding interaction on the damping properties of poly(n-butyl methacrylate)/small molecule hybrids. J. Appl. Polym. Sci. 2015, 132, 41954.

    Google Scholar 

  53. Painter, P. C.; Graf, J. F.; Coleman, M. M. Effect of hydrogen bonding on the enthalpy of mixing and the composition dependence of the glass transition temperature in polymer blends. Macromolecules 1991, 24, 5630–5638.

    Article  CAS  Google Scholar 

  54. Liu, C.; Yin, X.; Lin, Y.; Guan, A.; Wu, G. Small molecule-mediated glass transition of acrylic copolymers: effect of hydrogen bonding strength on glass transition temperature. J. Polym. Sci., Part B: Polym. Phys. 2015, 53, 400–408.

    Article  CAS  Google Scholar 

  55. Zhang, S. H.; Jin, X.; Painter, P. C.; Runt, J. Dynamic homogeneity in mixtures of poly(vinyl methyl ether) with low molecular weight phenolic molecules. Macromolecules 2003, 36, 7179–7188.

    Article  CAS  Google Scholar 

  56. Liu, Y.; Shi, G.; Wu, G. Hydrogen bonding-induced anomalous dynamics of polyacrylates mixed with small molecules. Polymer 2020, 201, 122627.

    Article  CAS  Google Scholar 

  57. Liu, C.; Liu, Z.; Yin, X.; Wu, G. Tuning the dynamic fragility of acrylic polymers by small molecules: the interplay of hydrogen bonding strength. Macromolecules 2015, 48, 4196–4206.

    Article  CAS  Google Scholar 

  58. Masser, K. A.; Runt, J. Dynamics of polymer blends of a strongly interassociating homopolymer with poly(vinyl methyl ether) and poly(2-vinylpyridine). Macromolecules 2010, 43, 6414–6421.

    Article  CAS  Google Scholar 

  59. Zhang, S.; Painter, P. C.; Runt, J. Coupling of component segmental relaxations in a polymer blend containing intermolecular hydrogen bonds. Macromolecules 2002, 35, 9403–9413.

    Article  CAS  Google Scholar 

  60. Carsi, M.; Sanchis, M.; Diaz-Calleja, R.; Riande, E.; Nugent, M. Effect of cross-linking on the molecular motions and nanodomains segregation in polymethacrylates containing aliphatic alcohol ether residues. Macromolecules 2012, 45, 3571–3580.

    Article  CAS  Google Scholar 

  61. Havriliak, S.; Negami, S. A complex plane analysis of α-dispersions in some polymer systems. J. Polym. Sci., Part C: Polym. Symp. 1966, 14, 99–117.

    Article  Google Scholar 

  62. Zhang, S.; Runt, J. Segmental dynamics and ionic conduction in poly(vinyl methyl ether)-lithium perchlorate complexes. J. Phys. Chem. B 2004, 108, 6295–6302.

    Article  CAS  PubMed  Google Scholar 

  63. Bergman, R.; Alvarez, F.; Alegrıa, A.; Colmenero, J. Dielectric relaxation in PMMA revisited. J. Non-Cryst. Solids 1998, 235, 580–583.

    Article  Google Scholar 

  64. Bergman, R.; Alvarez, F.; Alegrıa, A.; Colmenero, J. The merging of the dielectric α- and β-relaxations in poly(methyl methacrylate). J. Chem. Phys. 1998, 109, 7546–7555.

    Article  CAS  Google Scholar 

  65. Shuster, M.; Narkis, M.; Siegmann, A. Polymeric antiplasticization of polycarbonate with polycaprolactone. Polym. Eng. Sci. 1994, 34, 1613–1618.

    Article  CAS  Google Scholar 

  66. Stukalin, E. B.; Douglas, J. F.; Freed, K. F. Plasticization and antiplasticization of polymer melts diluted by low molar mass species. J. Chem. Phys. 2010, 132, 084504.

    Article  PubMed  CAS  Google Scholar 

  67. Cicerone, M. T.; Douglas, J. F. β-Relaxation governs protein stability in sugar-glass matrices. Soft Matter 2012, 8, 2983–2991.

    Article  CAS  Google Scholar 

  68. Schröter, K.; Unger, R.; Reissig, S.; Garwe, F.; Kahle, S.; Beiner, M.; Donth, E. Dielectric spectroscopy in the αβ splitting region of glass transition in poly(ethyl methacrylate) and poly(n-butyl methacrylate): different evaluation methods and experimental conditions. Macromolecules 1998, 31, 8966–8972.

    Article  Google Scholar 

  69. Garwe, F.; Schonhals, A.; Beiner, M.; Schroter, K.; Donth, E. Molecular cooperativity against locality at glass transition onset in poly(n-butyl methacrylate). J. Phys.: Condens. Matter 1994, 6, 6941–6945.

    CAS  Google Scholar 

  70. Angell, C. A. Formation of glasses from liquids and biopolymers. Science 1995, 267, 1924–1935.

    Article  CAS  PubMed  Google Scholar 

  71. Ngai, K. L.; Capaccioli, S. Relation between the activation energy of the Johari-Goldstein β relaxation and Tg of glass formers. Phys. Rev. E 2004, 69, 031501.

    Article  CAS  Google Scholar 

  72. Ngai, K. L. Relaxation and diffusion in complex systems. Springer: New York. 2011, p.63–73.

    Book  Google Scholar 

  73. Afandak, A.; Eslami, H. Ion-pairing and electrical conductivity in the ionic liquid 1-n-butyl-3-methylimidazolium methylsulfate [Bmim][MeSO4]: molecular dynamics Simulation study. J. Phys. Chem. B 2017, 121, 7699–7708.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (Nos. 51873063 and 51373053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Zhang Wu.

Electronic Supplementary Information

10118_2021_2595_MOESM1_ESM.pdf

Tuning the Johari-Goldstein β-Relaxation and Its Separation from α-Relaxation of Poly(n-alkyl methacrylate)s by Small Molecule-bridged Hydrogen Bonds

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, YB., Shi, GP. & Wu, GZ. Tuning the Johari-Goldstein β-Relaxation and Its Separation from α-Relaxation of Poly(n-alkyl methacrylate)s by Small Molecule-bridged Hydrogen Bonds. Chin J Polym Sci 39, 1459–1469 (2021). https://doi.org/10.1007/s10118-021-2595-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2595-y

Keywords

Navigation