Skip to main content

Advertisement

Log in

Supramolecular Self-assembly Behaviors of Asymmetric Diblock Copolymer Blends with Hydrogen Bonding Interactions between Shorter Blocks Modelled by Yukawa Potentials

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

We employed the extended self-consistent field theory to investigate the supramolecular self-assembly behaviors of asymmetric diblock copolymer blends (AB/B′C) with hydrogen bonding interactions between shorter B and B′ blocks. The hydrogen bonding interactions are described by Yukawa potentials, where the hydrogen bonding donors and acceptors were modelled as two blocks smeared with opposite screened charges. The hierarchical microstructures with parallelly packed lamellae-in-lamellae (Lam) and 4.8.8 Archimedean tilting pattern (4.8.8) were observed at lower and higher hydrogen bonding density (θ), respectively. The hierarchy of Lam and 4.8.8 were demonstrated by the one- and two-dimensional density profiles and the underlying order of the large-length-scale and small-length-scale microstructures were also clarified. It was found that the 4.8.8 is favorable to the stronger hydrogen bonding density or interactions. As θ increases, the microphase transition from Lam to 4.8.8 occurs at θ=0.34, which is mainly attributed to the optimization of the electrostatic energy and conformational entropy with sacrificing the interfacial energy. This work can provide a new strategy to understand the supramolecular self-assembly as well as the mechanism behind the formation of complex hierarchical microstructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lehn, J. M. Supramolecular chemistry-scope and perspectives molecules, supermolecules, and molecular devices (Nobel Lecture). Angew. Chem. Int. Ed. 1988, 27, 89–112.

    Article  Google Scholar 

  2. Cheng, M. J.; Zhang, Q.; Shi, F. Macroscopic Supramolecular assembly and its applications. Chinese J. Polym. Sci. 2018, 36, 306–321.

    Article  CAS  Google Scholar 

  3. Aida, T.; Meijer, E.; Stupp, S. I. Functional supramolecular polymers. Science 2012, 335, 813–817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhao, R.; Zhou, Y. J.; Jie, K. C.; Yang, J.; Perrier, S.; Huang, F. H. Fluorescent supramolecular polymersomes based on pillararene/paraquat molecular recognition for pH-controlled drug release. Chinese J. Polym. Sci. 2020, 38, 1–8.

    Article  CAS  Google Scholar 

  5. Dong, S. Y.; Zheng, B.; Wang, F.; Huang, F. H. Supramolecular polymers constructed from macrocycle-based host-guest molecular recognition motifs. Acc. Chem. Res. 2014, 47, 1982–1994.

    Article  CAS  PubMed  Google Scholar 

  6. Liu, C.; Li, J.; Jin, Z.; Hou, P.; Zhao, H.; Wang, L. Synthesis of graphene-epoxy nanocomposites with the capability to self-heal underwater for materials protection. Compos. Commun. 2019, 15, 155–161.

    Article  Google Scholar 

  7. Ji, X.; Wang, P.; Wang H.; Huang, F. A fluorescent supramolecular crosslinked polymer gel formed by crown ether based host-guest interactions and aggregation induced emission. Chinese J. Polym. Sci. 2015, 33, 890–898.

    Article  CAS  Google Scholar 

  8. Chen, J.; Hou, Y.; Li, S.; Huang, Y.; Lv, S. Host-guest complexes of β-cyclodextrin with methyl orange/methylene blue-derived multi-heteroatom doped carbon materials for supercapacitors. Compos. Commun. 2019, 16, 117–123.

    Article  Google Scholar 

  9. Stupp, S. I.; Palmer, L. C. Supramolecular chemistry and self-assembly in organic materials design. Chem. Mater. 2014, 26, 507–518.

    Article  CAS  Google Scholar 

  10. Gogoi, N.; Bashir, B.; Yang, Z.; Ma, P. Supramolecular assembly of leaf-like fluorescent tetraphenylethylene through polymer-directed inter-locking. Compos. Commun. 2019, 11, 45–51.

    Article  Google Scholar 

  11. Xu, L.; Zhang, H. H.; Lu, Y. Y.; An, L. J.; Shi, T. F. The effects of solvent polarity on the crystallization behavior of thin π-conjugated polymer film in solvent mixtures investigated by grazing incident X-ray diffraction. Polymer 2020, 190, 122259.

    Article  CAS  Google Scholar 

  12. Zhang, K.; Chen, Z.; Guo, B.; Cai, K.; Liang, Y.; Li, J.; Jin, L. Y. Self-assembly of amphiphilic linear diblock rod-coil molecules by hydrogen bond and π-π stacking interactions. Chinese J. Polym. Sci. 2016, 34, 307–315.

    Article  CAS  Google Scholar 

  13. Li, J.; Zhang, P.; Chen, L.; Li, G.; Chen, H.; Jian C.; Wu, P.; Chen, M.; Zhao, X.; Song, P. Strong, tough and healable elastomer nanocomposites enabled by a hydrogen-bonded supramolecular network. Compos. Commun. 2020, 22, 100530.

    Article  Google Scholar 

  14. Fan, J.; Xu, X.; Yu, W.; Wei, Z.; Zhang, D. Hydrogen-bond-driven supramolecular self-assembly of diacetylene derivatives for topochemical polymerization in solution. Polym. Chem. 2020, 11, 1947–1954.

    Article  CAS  Google Scholar 

  15. Chai, Z.; Xie, Z.; Zhang, P.; Ouyang, X.; Li, R.; Gao, S.; Wei, H.; Liu, L.; Shuai, Z. High impact resistance epoxy resins by incorporation of quadruply hydrogen bonded supramolecular polymers. Chinese J. Polym. Sci. 2016, 34, 850–857.

    Article  CAS  Google Scholar 

  16. Hou, Y.; He, Z.; Wang, C.; Zhang, L.; Xuan, Q.; Wei, S.; Wang, Y.; Pan, D.; Dong B.; Wei R.; Naik, N. The recent progress of synergistic supramolecular polymers: preparation, properties and applications. Chem. Commun. 2021, 57, 1413–1429.

    Article  Google Scholar 

  17. Zhang, X.; Wang, L. Q; Lin, J. P. Phase behaviors of supramolecular graft copolymers with reversible bonding. J. Chem. Phys. 2013, 139, 184901.

    Article  PubMed  CAS  Google Scholar 

  18. Golkaram, M.; Loos, K. A critical approach to polymer dynamics in supramolecular polymers. Macromolecules 2019, 52, 9427–9444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xu, L.; Shi, T. F.; An, L. J.; Lu, Y. Y.; Wang, L. N. Effect of interfacial adsorption on the stability of thin polymer films in a solvent-induced process. Chinese J. Polym. Sci. 2021, 39, 501–511.

    Article  CAS  Google Scholar 

  20. Zhou, G. Y.; An, X. Y.; Zhou, C. Y.; Wu, Y.; Miao, Y. E.; Liu, T. X. Highly porous electroactive polyimide-based nanofibrous composite anode for all-organic aqueous ammonium dual-ion batteries. Compos. Commun. 2020, 22, 100519.

    Article  Google Scholar 

  21. Wang, L. N.; Zhang, H. H.; Xu, L.; Liu, B. Y.; Shi, T. F.; Jiang, S. C.; An, L. J. Dewetting kinetics of thin polymer films with different architectures: effect of polymer adsorption. Chinese J. Polym. Sci. 2018, 36, 984–990.

    Article  CAS  Google Scholar 

  22. Kong, L.; Zhu, Y.; Huang, G.; Wu, J. Carbon nanodots as dual role of crosslinking and reinforcing chloroprene rubber. Compos. Commun. 2020, 22, 100441.

    Article  Google Scholar 

  23. Zhou, X. H.; Li, C.; Zhu, L. F.; Zhou, X. C. Engineering hydrogels by soaking: from mechanical strengthening to environmental adaptation. Chem. Commun. 2020, 56, 13731–13747.

    Article  CAS  Google Scholar 

  24. Zhang, L.; Wang, D.; Xu, L. Q.; Zhang, A. M. A supramolecular polymer with ultra-stretchable, notch-insensitive, rapid self-healing and adhesive properties. Polym. Chem. 2021, 12, 660–669.

    Article  Google Scholar 

  25. Zuccaccia, D.; Pinalli, R.; De Zorzi, R.; Semeraro, M.; Credi, A.; Zuccacia, C.; Macchioni, A.; Geremia, S.; Dalcanale, E. Hierarchical self-assembly and controlled disassembly of a cavitand-based host-guest supramolecular polymer. Polym. Chem. 2021, 22, 389–401.

    Article  Google Scholar 

  26. Wu, D. J.; Vonk, N. H.; Lamers, B. A. G.; Castilho, M.; Malda, J. Hoefnagels, J. P. M.; Dankers, P. Y. W. Anisotropic hygro-expansion in hydrogel fibers owing to uniting 3D electrowriting and supramolecular polymer assembly. Eur. Polym. J. 2020, 141, 110099.

    Article  CAS  Google Scholar 

  27. Ye, S. H.; Wang, B.; Shi, Y. T.; Wang, B. Z.; Zhang, Y. R.; Feng, Y. Z.; Han, W. J.; Liu, C. T.; Shen, C. Y. Superhydrophobic and superelastic thermoplastic polyurethane/multiwalled carbon nanotubes porous monolith for durable oil/water separation. Compos. Commun. 2020, 21, 100378.

    Article  Google Scholar 

  28. Lu, Y. Q.; Lin, J. P.; Wang, L. Q.; Zhang, L. S.; Cai, C. H. Self-assembly of copolymer micelles: higher-level assembly for constructing hierarchical structure. Chem. Rev. 2020, 120, 4111–4140.

    Article  CAS  PubMed  Google Scholar 

  29. Gao, L.; Gao, H. B.; Lin, J. P.; Wang, L. Q.; Wang, X. S.; Yang, C. M.; Lin, S. L. Growth and termination of cylindrical micelles via liquid-crystallization-driven self-assembly. Macromolecules 2020, 53, 8992–8999.

    Article  CAS  Google Scholar 

  30. Gruschwitz, F. V.; Fu, M. C.; Klein, T.; Takahashi, R.; Higashihara, T.; Hoeppener, S.; Nischang, I.; Sakurai, K.; Brendel, J. C. Unraveling decisive structural parameters for the self-assembly of supramolecular polymer bottlebrushes based on benzene trisureas. Macromolecules 2020, 53, 7552–7560.

    Article  CAS  Google Scholar 

  31. Lin, C. M.; Dwivedi, A. K.; Chuang, W. T.; Lin, H. C. Hierarchical self-assembly of supramolecular polymer complexes mediated by various generations of bent-core mesogenic dendrimers hydrogen-bonded with triblock copolymer. Polymer 2020, 208, 122880.

    Article  CAS  Google Scholar 

  32. Payandehpeyman, J.; Mazaheri, M.; Khamehchi, M. Prediction of electrical conductivity of polymer-graphene nanocomposites by developing an analytical model considering interphase, tunneling and geometry effects. Compos. Commun. 2020, 21, 100364.

    Article  Google Scholar 

  33. Monticeli, F. M.; Daou, D.; Peković, O.; Simonović, A.; Voorwald, H. J. C.; Cioffi, M. O. H. FEA simulation and experimental validation of mode I and II delamination at the carbon/glass/epoxy hybrid interface: physical-based interpretation. Compos. Commun. 2020, 22, 100532.

    Article  Google Scholar 

  34. Liu, Z. J.; Xu, Z. W.; Wang, L. Q.; Lin, J. P. Distinctive optical properties of hierarchically ordered nanostructures self-assembled from multiblock copolymer/nanoparticle mixtures. Macromol. Rapid Commun. 2020, 41, 2000131.

    Article  CAS  Google Scholar 

  35. Li, Q.; Wang, L. Q.; Lin, J. P.; Xu, Z. W. Distinctive morphology modifiers for polymer blends: roles of asymmetric Janus nanoparticles during phase separation. J. Phys. Chem. B 2020, 124, 4619–4630.

    Article  CAS  PubMed  Google Scholar 

  36. Xu, P. X.; Lin, J. P.; Zhang, L. S. Supramolecular multicompartment gels formed by ABC graft copolymers: high toughness and recovery properties. Phys. Chem. Chem. Phys. 2018, 20, 15995–16004.

    Article  CAS  PubMed  Google Scholar 

  37. Dong, Q.; Li, W. H. Effect of molecular asymmetry on the formation of asymmetric nanostructures in ABC-type block copolymers. Macromolecules 2021, 54, 203–213.

    Article  CAS  Google Scholar 

  38. Gu, X. Y.; Li, W. H. Impact of thin-film confinement on the packing of low-coordinate spheres in bulk. Macromolecules 2020, 53, 9131–9141.

    Article  CAS  Google Scholar 

  39. Li, C. C.; Dong, Q. S.; Li, W. H. Largely tunable asymmetry of phase diagrams of A(AB)n miktoarm star copolymer. Macromolecules 2020, 53, 10907–10917.

    Article  CAS  Google Scholar 

  40. Zhang, X.; Lin, J. Y.; Wang, L. Q.; Zhang, L. S.; Lin, J. P.; Gao, L. Supramolecular assembly of diblock copolymer blends with hydrogen-bonding interactions modeled by Yukawa potentials. Polymer 2015, 18, 69–80.

    CAS  Google Scholar 

  41. Dehghan, A.; Shi, A. C. Modeling hydrogen bonding in diblock copolymer/homopolymer blends. Macromolecules 2013, 46, 5796–5805.

    Article  CAS  Google Scholar 

  42. Feng, E. H.; Lee, W. B.; Fredrickson, G. H. Supramolecular diblock copolymers: a field-theoretic model and mean-field solution. Macromolecules 2007, 40, 693–702.

    Article  CAS  Google Scholar 

  43. Lee, W. B.; Elliott, R.; Katsov, K.; Fredrickson, G. H. Phase morphologies in reversibly bonding supramolecular triblock copolymer blends. Macromolecules 2007, 40, 8445–8454.

    Article  CAS  Google Scholar 

  44. Matsushita, Y. Creation of hierarchically ordered nanophase structures in block polymer blends various competing interactions. Macromolecules 2007, 40, 771–776.

    Article  CAS  Google Scholar 

  45. Li, W. H.; Xu, Y. C.; Zhang, G. J.; Qiu, F.; Yang, Y. L.; Shi, A. C. Realspace self-consistent mean-field theory study of ABC star triblock copolymers. J. Chem. Phys. 2010, 133, 064904.

    Article  PubMed  CAS  Google Scholar 

  46. Matsen, M. W.; Thompson, R. B. Equilibrium behavior of symmetric ABA triblock copolymer melts. J. Chem. Phys. 1999, 111, 7139–7146.

    Article  CAS  Google Scholar 

  47. Patterson, A. L.; Yu, B.; Danielsen, S. P. O.; Davidson, E. C.; Fredrickson, G. H.; Segalman, R. A. Monomer sequence effects on interfacial width and mixing in self-assembled diblock copolymers. Macromolecules 2020, 53, 3262–3272.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Natural Science Foundation of Shanghai (No. 21ZR1402800), the Fundamental Research Funds for the Central Universities (No. 2232020D-11), the China Postdoctoral Science Foundation (No. 2021M690597) and the Open Project Program of Fujian Provincial Key Laboratory of Textiles Inspection Technology (Fujian Fiber Inspection Center) (Nos. 2020-MXJ-04).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin Xu or Tianxi Liu.

Electronic Supplementary Information

10118_2021_2591_MOESM1_ESM.pdf

Supramolecular Self-assembly Behaviors of Asymmetric Diblock Copolymer Blends with Hydrogen Bonding Interactions between Shorter Blocks Modelled by Yukawa Potentials

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Chen, J., Xu, L. et al. Supramolecular Self-assembly Behaviors of Asymmetric Diblock Copolymer Blends with Hydrogen Bonding Interactions between Shorter Blocks Modelled by Yukawa Potentials. Chin J Polym Sci 39, 1502–1509 (2021). https://doi.org/10.1007/s10118-021-2591-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2591-2

Keywords

Navigation