Skip to main content

Advertisement

Log in

Metal-free Synthesis of Pyridyl Conjugated Microporous Polymers for Photocatalytic Hydrogen Evolution

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Developing efficient, stable and sustainable photocatalysts for water splitting is one of the most significant methods for generating hydrogen. Conjugated microporous polymers, as a new type of organic semiconductor photocatalyst, have adjustable bandgaps and high specific surface areas, and can be synthesized using diverse methods. In this work, we report the design and synthesis of a series of pyridyl conjugated microporous polymers (PCMPs) utilizing polycondensation of aromatic aldehydes and aromatic ketones in the presence of ammonium acetate. PCMPs with different chemical structures were synthesized via adjusting monomers with different geometries and contents of nitrogen element, which could adjust the bandgap and photocatalytic performance. Photocatalytic hydrogen evolution rate (HER) up to 1198.9 µmol·h−1·g−1 was achieved on the optimized polymer with a specific surface area of 312 m2·g−1 under UV-Vis light irradiation (λ>320 nm). This metal-free synthetic method provides a new avenue to preparing an efficient photocatalyst for hydrogen evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nazir, M. S.; Mahdi, A. J.; Bilal, M.; Sohail, H. M.; Ali, N.; Iqbal, H. M. N. Environmental impact and pollution-related challenges of renewable wind energy paradigm-a review. Sci. Total. Environ. 2019, 683, 436–444.

    Article  CAS  PubMed  Google Scholar 

  2. Wang, W. J.; Chen, M.; Huang, D. L.; Zeng, G. M.; Zhang, C.; Lai, C.; Zhou, C. Y.; Yang, Y.; Cheng, M.; Hu, L.; Xiong, W. P.; Li, Z. H.; Wang, Z. W. An overview on nitride and nitrogen-doped photocatalysts for energy and environmental applications. Compos. B. Eng. 2019, 172, 704–723.

    Article  CAS  Google Scholar 

  3. Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

    Article  CAS  PubMed  Google Scholar 

  4. Meng, N.; Ren, X.; Santagiuliana, G.; Ventura, L.; Zhang, H.; Wu, J.; Yan, H.; Reece, M. J.; Bilotti, E. Ultrahigh β-phase content poly(vinylidene fluoride) with relaxor-like ferroelectricity for high energy density capacitors. Nat. Commun. 2019, 10, 4535.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Turner, J.; Sverdrup, G.; Mann, M. K.; Maness, P. C.; Kroposki, B.; Ghirardi, M.; Evans, R. J.; Blake, D. Renewable hydrogen production. Int. J. Energy Res. 2008, 32, 379–407.

    Article  CAS  Google Scholar 

  6. Zhang, J. H.; Wei, M. J.; Wei, Z. W.; Pan, M.; Su, C. Y. Ultrathin graphitic carbon nitride nanosheets for photocatalytic hydrogen evolution. ACS Appl. Nano Mater. 2020, 3, 1010–1018.

    Article  CAS  Google Scholar 

  7. Hosseini, S. E.; Wahid, M. A. Hydrogen production from renewable and sustainable energy resources: promising green energy carrier for clean development. Renew. Sust. Energ. Rev. 2016, 57, 850–866.

    Article  CAS  Google Scholar 

  8. Islam, A.; Teo, S. H.; Awual, M. R.; Taufiq Yap, Y. H. Ultrathin assembles of porous array for enhanced H2 evolution. Sci. Rep. 2020, 10, 2324.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Huo, J. W.; Yuan, C.; Wang, Y. Nanocomposites of three-dimensionally ordered porous TiO2 decorated with Pt and reduced graphene oxide for the visible-light photocatalytic degradation of waterborne pollutants. ACS Appl. Nano Mater. 2019, 2, 2713–2724.

    Article  CAS  Google Scholar 

  10. Wu, T. T.; Niu, P.; Yang, Y. Q.; Yin, L. C.; Tan, J.; Zhu, H. Z.; Irvine, J. T. S.; Wang, L. Z.; Liu, G.; Cheng, H. M. Homogeneous doping of substitutional nitrogen/carbon in TiO2 plates for visible light photocatalytic water oxidation. Adv. Funct. Mater. 2019, 29, 1901943.

    Article  Google Scholar 

  11. Meng, A. Y.; Zhang, L. Y.; Cheng, B.; Yu, J. G. Dual cocatalysts in TiO2 photocatalysis. Adv. Mater. 2019, 31, 1807660.

    Article  Google Scholar 

  12. Guo, Q.; Zhou, C. Y.; Ma, Z. B.; Yang, X. M. Fundamentals of TiO2 photocatalysis: concepts, mechanisms, and challenges. Adv. Mater. 2019, 31, 1901997.

    Article  CAS  Google Scholar 

  13. Wang, M. Y.; Zhang, Q. J.; Shen, Q. Q.; Li, Q. Y.; Ren, S. J. Truxene-based conjugated microporous polymers via different synthetic methods. Chinese J. Polym. Sci. 2020, 38, 151–157.

    Article  CAS  Google Scholar 

  14. Hu, X. L.; Li, H. G.; Tan, B. E. COFs-based porous materials for photocatalytic applications. Chinese J. Polym. Sci. 2020, 38, 673–684.

    Article  CAS  Google Scholar 

  15. Yanagida, S.; Kabumoto, A.; Mizumoto, K.; Pac, C.; Yoshino, K. Poly(p-phenylene)-catalysed photoreduction of water to hydrogen. J. Chem. Soc., Chem. Commun. 1985, 8, 474–475.

    Article  Google Scholar 

  16. Maruyama, T.; Yamamoto, T. Effective photocatalytic system based on chelating π-conjugated poly(2,2′-bipyridine-5,5′-diyl) and platinum for photoevolution of H2 from aqueous media and spectroscopic analysis of the catalyst. J. Phys. Chem. B 1997, 101, 3806–3810.

    Article  CAS  Google Scholar 

  17. Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80.

    Article  CAS  PubMed  Google Scholar 

  18. Wang, X. C.; Maeda, K.; Chen, X. F.; Takanabe, K.; Domen, K.; Hou, Y. D.; Fu, X. Z.; Antonietti, M. Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light. J. Am. Chem. Soc. 2009, 131, 1680–1681.

    Article  CAS  PubMed  Google Scholar 

  19. Bhunia, M. K.; Yamauchi, K.; Takanabe, K. Harvesting solar light with crystalline carbon nitrides for efficient photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 2014, 53, 11001–11005.

    Article  CAS  Google Scholar 

  20. Rawool, S. A.; Samanta, A.; Ajithkumar, T. G.; Kar, Y.; Polshettiwar, V. Photocatalytic hydrogen generation and CO2 conversion using g-C3N4 decorated dendritic fibrous nanosilica: role of interfaces between silica and g-C3N4. ACS Appl. Energy Mater. 2020, 33, 8150–8158.

    Article  Google Scholar 

  21. Wang, W. C.; Tao, Y.; Du, L. L.; Wei, Z.; Yan, Z. P.; Chan, W. K.; Lian, Z. C.; Zhu, R. X.; Phillips, D. L.; Li, G. S. Femtosecond time-resolved spectroscopic observation of long-lived charge separation in bimetallic sulfide/g-C3N4 for boosting photocatalytic H2 evolution. Appl. Catal. B 2021, 282, 119568.

    Article  CAS  Google Scholar 

  22. Godin, R.; Wang, Y.; Zwijnenburg, M. A.; Tang, J.; Durrant, J. R. Time-resolved spectroscopic investigation of charge trapping in carbon nitrides photocatalysts for hydrogen generation. J. Am. Chem. Soc. 2017, 139, 5216–5224.

    Article  CAS  PubMed  Google Scholar 

  23. Lee, J. S. M.; Cooper, A. I. Advances in conjugated microporous polymers. Chem. Rev. 2020, 120, 2171–2214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhi, Y. F.; Yao, Z. J.; Jiang, W. B.; Xia, H.; Shi, Z.; Mu, Y.; Liu, X. Conjugated microporous polymers as heterogeneous photocatalysts for efficient degradation of a mustard-gas simulant. ACS Appl. Mater. Interfaces 2019, 11, 37578–37585.

    Article  CAS  PubMed  Google Scholar 

  25. Sprick, R. S.; Jiang, J. X.; Bonillo, B.; Ren, S.; Ratvijitvech, T.; Guiglion, P.; Zwijnenburg, M. A.; Adams, D. J.; Cooper, A. I. Tunable organic photocatalysts for visible-light-driven hydrogen evolution. J. Am. Chem. Soc. 2015, 137, 3265–3270.

    Article  CAS  PubMed  Google Scholar 

  26. Liras, M.; Iglesias, M.; Sánchez, F. Conjugated microporous polymers incorporating BODIPY moieties as light-emitting materials and recyclable visible-light photocatalysts. Macromolecules 2016, 49, 1666–1673.

    Article  CAS  Google Scholar 

  27. Xu, Y. F.; Mao, N.; Zhang, C.; Wang, X.; Zeng, J. H.; Chen, Y.; Wang, F.; Jiang, J. X. Rational design of donor-π-acceptor conjugated microporous polymers for photocatalytic hydrogen production. Appl. Catal. B 2018, 228, 1–9.

    Article  Google Scholar 

  28. Wang, X. P.; Zhao, X. D.; Dong, W. B.; Zhang, X. H.; Xiang, Y. G.; Huang, Q. Y.; Chen, H. Integrating amino groups within conjugated microporous polymers by versatile thiol-yne coupling for light-driven hydrogen evolution. J. Mater. Chem. A 2019, 7, 16277–16284.

    Article  CAS  Google Scholar 

  29. Gao, X. M.; Shu, C.; Zhang, C.; Ma, W. Y.; Ren, S. B.; Wang, F.; Chen, Y.; Zeng, J. H.; Jiang, J. X. Substituent effect of conjugated microporous polymers on the photocatalytic hydrogen evolution activity. J. Mater. Chem. A 2020, 8, 2404–2411.

    Article  CAS  Google Scholar 

  30. Zhang, X. L.; Wang, L.; Chen, L.; Ma, X. Y.; Xu, H. X., Ultrathin 2D conjugated polymer nanosheets for solar fuel generation. Chinese J. Polym. Sci. 2019, 37, 101–114.

    Article  CAS  Google Scholar 

  31. Chen, L.; Honsho, Y.; Seki, S.; Jiang, D. Light-harvesting conjugated microporous polymers: rapid and highly efficient flow of light energy with a porous polyphenylene framework as antenna. J. Am. Chem. Soc. 2010, 132, 6742–6748.

    Article  CAS  PubMed  Google Scholar 

  32. Liu, Q.; Tang, Z.; Wu, M.; Zhou, Z. Design, preparation and application of conjugated microporous polymers. Polym. Int. 2014, 63, 381–392.

    Article  CAS  Google Scholar 

  33. Schmidt, J.; Werner, M.; Thomas, A. Conjugated microporous polymer networks via yamamoto polymerization. Macromolecules 2009, 42, 4426–4429.

    Article  CAS  Google Scholar 

  34. Jiang, J. X.; Trewin, A.; Adams, D. J.; Cooper, A. I. Band gap engineering in fluorescent conjugated microporous polymers. Chem. Sci. 2011, 2, 1777–1781.

    Article  CAS  Google Scholar 

  35. Trunk, M.; Herrmann, A.; Bildirir, H.; Yassin, A.; Schmidt, J.; Thomas, A. Copper-free sonogashira coupling for high-surface-area conjugated microporous poly(aryleneethynylene) networks. Chem. Eur. J. 2016, 22, 7179–7183.

    Article  CAS  PubMed  Google Scholar 

  36. Weiss, M. Acetic acid ammonium acetate reactions-an improved Chichibabin pyridine synthesis1. J. Am. Chem. Soc. 1952, 74, 200–202.

    Article  CAS  Google Scholar 

  37. Cheng, Z. H.; Wang, L.; He, Y.; Chen, X. J.; Wu, X. J.; Xu, H. X.; Liao, Y. Z.; Zhu, M. F. Rapid metal-free synthesis of pyridylfunctionalized conjugated microporous polymers for visible-light-driven water splitting. Polym. Chem. 2020, 11, 3393–3397.

    Article  CAS  Google Scholar 

  38. Jiang, J. X.; Su, F.; Trewin, A.; Wood, C. D.; Niu, H.; Jones, J. T. A.; Khimyak, Y. Z.; Cooper, A. I. Synthetic control of the pore dimension and surface area in conjugated microporous polymer and copolymer networks. J. Am. Chem. Soc. 2008, 130, 7710–7720.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang, C.; Kong, R.; Wang, X.; Xu, Y.; Wang, F.; Ren, W.; Wang, Y.; Su, F.; Jiang, J. X. Porous carbons derived from hypercrosslinked porous polymers for gas adsorption and energy storage. Carbon 2017, 114, 608–618.

    Article  CAS  Google Scholar 

  40. Weber, J.; Antonietti, M.; Thomas, A. Microporous networks of high-performance polymers: elastic deformations and gas sorption properties. Macromolecules 2008, 41, 2880–2885.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 52073046, 51873036 and 51673039), the Chang Jiang Scholars Program (No. Q2019152), the Fundamental Research Funds for the Central Universities (No. 2232019A3-01), the Shanghai Shuguang Program (No. 19SG28), the Shanghai Natural Science Foundation (No. 19D3859), the Shanghai Pujiang Talent Program (No. 20PJ1400600) and the International Joint Laboratory for Advanced Fiber and Low-Dimension Materials (No. 18520750400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao-Zu Liao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, QR., Cheng, ZH., Yang, C. et al. Metal-free Synthesis of Pyridyl Conjugated Microporous Polymers for Photocatalytic Hydrogen Evolution. Chin J Polym Sci 39, 1004–1012 (2021). https://doi.org/10.1007/s10118-021-2574-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2574-3

Keywords

Navigation