Skip to main content
Log in

Improving Impact Toughness of Polylactide/Ethylene-co-vinyl-acetate Blends via Adding Fumed Silica Nanoparticles: Effects of Specific Surface Area-dependent Interfacial Selective Distribution of Silica

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Adding fumed silica (SiO2) has been considered as an effective method for tailoring the phase morphology and performance of elastomer-toughened plastic binary blends. It has been demonstrated that the selective distribution of SiO2 plays a decisive role in the mechanical properties of plastic/elastomer/SiO2 nanocomposites, especially for the impact toughness. In this work, we aim to illuminate the role of specific surface area in controlling their selective distribution of fumed SiO2 and consequent mechanical properties of plastic/elastomer binary blends. Three types of SiO2 with different specific surface areas were incorporated into polylactide/ethylene-co-vinyl-acetate (PLA/EVA) model blends by melt blending directly. It was found that the selective distribution of SiO2 is largely determined by their specific surface areas, i.e. SiO2 nanoparticles with low specific surface area has a stronger tendency to be located at the interface between PLA matrix and EVA dispersed phase as compared to those with high specific surface area. The specific surface area-dependent interfacial selective distribution of SiO2 is mainly attributed to the extent of increased viscosity of EVA dispersed phase in which SiO2 nanoparticles are initially dispersed and resultant migration rate of SiO2 nanoparticles. The interfacial localized SiO2 nanoparticles induce an obvious enhancement in the impact toughness with strength and modulus well maintained. More importantly, in the case of the same interfacial distribution, toughening efficiency is increased with the specific surface area of SiO2. Therefore, this is an optimum specific surface area of SiO2 for the toughening. This work not only provides a novel way to manipulate the selective distribution of SiO2 in elastomer-toughened plastic blends toward high-performance, but also gives a deep insight into the role of interfacial localized nanoparticles in the toughening mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Busche, B. J.; Tonelli, A. E.; Balik, C. M. Morphology of polystyrene/poly(dimethyl siloxane) blends compatibilized with star polymers containing a γ-cyclodextrin core and polystyrene arms. Polymer 2010, 51, 1465–1471.

    Article  CAS  Google Scholar 

  2. Cui, L. L.; Troeltzsch, C.; Yoon, P. J.; Paul, D. R. Morphology and properties of nanocomposites formed from poly(ethylene-co-methacrylic acid) ionomers and organoclays: effect of acid neutralization. Macromolecules 2009, 42, 2599–2608.

    Article  CAS  Google Scholar 

  3. Fornes, T. D.; Hunter, D. L.; Paul, D. R. Nylon-6 nanocomposites from alkylammonium-modified clay: the role of alkyl tails on exfoliation. Macromolecules 2004, 37, 1793–1798.

    Article  CAS  Google Scholar 

  4. Montaudo, G.; Puglisi, C.; Samperi, F. Mechanism of exchange in PBT/PC and PET/PC blends. Composition of the copolymer formed in the melt mixing process. Macromolecules 1998, 31, 650–661.

    Article  CAS  Google Scholar 

  5. Ryan, A. J. Polymer science — designer polymer blends. Nat. Mater. 2002, 1, 8–10.

    Article  CAS  PubMed  Google Scholar 

  6. Tucker, C. L.; Moldenaers, P. Microstructural evolution in polymer blends. Annu. Rev. Fluid Mech. 2002, 34, 177–210.

    Article  Google Scholar 

  7. Macosko, C. W. Morphology development and control in immiscible polymer blends. Macromol. Symposia 2000, 149, 171–184.

    Article  CAS  Google Scholar 

  8. Kang, H. L.; Qiao, B.; Wang, R. G.; Wang, Z.; Zhang, L. Q.; Ma, J.; Coates, P. Employing a novel bioelastomer to toughen polylactide. Polymer 2013, 54, 2450–2458.

    Article  CAS  Google Scholar 

  9. Utracki, L. A. Commercial polymer blends. Springer Science & Business Media: 2013.

  10. Sun, C. B.; Mao, H. D. Chen, F.; Fu, Q. Preparation of polylactide composite with excellent flame retardance and improved mechanical properties.. Chinese J. Polym. Sci. 2018, 36, 1385–1393.

    Article  CAS  Google Scholar 

  11. Premphet, K.; Paecharoenchai, W. Polypropylene/metallocene ethylene-octene copolymer blends with a bimodal particle size distribution: mechanical properties and their controlling factors. J. Appl. Polym. Sci. 2002, 85, 2412–2418.

    Article  CAS  Google Scholar 

  12. Wu, M.; Wu, Z.; Wang, K.; Zhang, Q.; Fu, Q. Simultaneous the thermodynamics favorable compatibility and morphology to achieve excellent comprehensive mechanics in PLA/OBC blend. Polymer 2014, 55, 6409–6417.

    Article  CAS  Google Scholar 

  13. Zolali, A. M.; Favis, B. D. Toughening of cocontinuous polylactide/polyethylene blends via an interfacially percolated intermediate phase. Macromolecules 2018, 51, 3572–3581.

    Article  CAS  Google Scholar 

  14. Xiu, H.; Huang, C. M.; Bai, H. W.; Jiang, J.; Chen, F.; Deng, H.; Wang, K.; Zhang, Q.; Fu, Q. Improving impact toughness of polylactide/poly(ether)urethane blends via designing the phase morphology assisted by hydrophilic silica nanoparticles. Polymer 2014, 55, 1593–1600.

    Article  CAS  Google Scholar 

  15. Guo, B. B.; Ji, X. Z.; Wang, W.; Chen, X. T.; Wang, P.; Wang, L. P.; Bai, J. M. Highly flexible, thermally stable, and static dissipative nanocomposite with reduced functionalized graphene oxide processed through 3D printing. Compos. Part B: Eng. 2020, 108598.

  16. Taguet, A.; Cassagnau, P.; Lopez-Cuesta, J. M. Structuration, selective dispersion and compatibilizing effect of (nano)fillers in polymer blends. Prog. Polym. Sci. 2014, 34, 1526–1563.

    Article  CAS  Google Scholar 

  17. Liu, L.; Wang, Y.; Li, Y.; Wu, J.; Zhou, Z.; Jiang, C. Improved fracture toughness of immiscible polypropylene/ethylene-co-vinyl acetate blends with multiwalled carbon nanotubes. Polymer 2009, 50, 3072–3078.

    Article  CAS  Google Scholar 

  18. Cao, Y. W.; Zhang, J.; Feng, J. C.; Wu, P. Y. Compatibilization of immiscible polymer blends using graphene oxide sheets. ACS Nano 2011, 5, 5920–5927.

    Article  CAS  PubMed  Google Scholar 

  19. de Luna, M. S.; Causa, A.; Filippone, G. Interfacially-located nanoparticles anticipate the onset of co-continuity in immiscible polymer blends. Polymers 2017, 9, 393.

    Article  CAS  Google Scholar 

  20. Wu, D. F.; Zhang, Y. S.; Zhang, M.; Yu, W. Selective localization of multiwalled carbon nanotubes in poly(ε-caprolactone)/polylactide blend. Biomacromolecules 2009, 10, 417–424.

    Article  CAS  PubMed  Google Scholar 

  21. Chen, J.; Shi, Y. Y.; Yang, J. H.; Zhang, N.; Huang, T.; Chen, C.; Wang, Y.; Zhou, Z. W. A simple strategy to achieve very low percolation threshold via the selective distribution of carbon nanotubes at the interface of polymer blends. J. Mater. Chem. 2012, 22, 22398–22404.

    Article  CAS  Google Scholar 

  22. Elias, L.; Fenouillot, F.; Majesté, J. C.; Cassagnau, P. Morphology and rheology of immiscible polymer blends filled with silica nanoparticles. Polymer 2007, 48, 6029–6040.

    Article  CAS  Google Scholar 

  23. Mallette, J.; Marquez, A.; Manero, O.; Castro-Roírfguez, R. Carbon black filled PET/PMMA blends: electrical and morphological studies. Polym. Eng. Sci. 2000, 40, 2272–2278.

    Article  CAS  Google Scholar 

  24. Premphet, K.; Horanont, P. Phase structure of ternary polypropylene/elastomer/filler composites: effect of elastomer polarity. Polymer 2000, 41, 9283–9290.

    Article  CAS  Google Scholar 

  25. Schuster, R.; Meier, J.; Klüppel, M. The role of interphase in filler partition in rubber blends. Kautschuk Gummi Kunststoffe 2000, 53, 663–674.

    CAS  Google Scholar 

  26. Sirisinha, C.; Prayoonchatphan, N. Study of carbon black distribution in BR/NBR blends based on damping properties: influences of carbon black particle size, filler, and rubber polarity. J. Appl. Polym. Sci. 2001, 81, 3198–3203.

    Article  CAS  Google Scholar 

  27. Liu, L.; Jia, C. Y.; He, J. M.; Zhao, F.; Fan, D. P.; Xing, L. X.; Wang, M. Q.; Wang, F.; Jiang, Z. X.; Huang, Y. D. Interfacial characterization, control and modification of carbon fiber reinforced polymer composites. Compos. Sci. Technol. 2015, 121, 56–72.

    Article  CAS  Google Scholar 

  28. Xiu, H.; Bai, H. W.; Huang, C. M.; Xu, C.; Li, X.; Fu, Q. Selective localization of titanium dioxide nanoparticles at the interface and its effect on the impact toughness of poly(L-lactide)/poly(ether) urethane blends. Express Polym. Lett. 2013, 7, 261–271.

    Article  CAS  Google Scholar 

  29. Li, X.; Fu, Z.; Gu, X. Y.; Liu, H. H.; Wang, H. T.; Li, Y. J. Interfacially located nanoparticles: Barren nanorods versus polymer grafted nanorods. Compos. Part B:Eng. 2020, 198, 108153.

    Article  CAS  Google Scholar 

  30. Callan, J.; Hess, W.; Scott, C. Elastomer blends. Compatibility and relative response to fillers. Rubber Chem. Technol. 1971, 44, 814–837.

    Article  CAS  Google Scholar 

  31. Liu, H. L.; Zhang, T. T.; Cai, Y.; Deng, S. H.; Bai, D. Y.; Bai, H. W.; Zhang, Q.; Fu, Q. Towards polylactide/core-shell rubber blends with balanced stiffness and toughness via the formation of rubber particle network with the aid of stereocomplex crystallites. Polymer 2018, 159, 23–31.

    Article  CAS  Google Scholar 

  32. Sircar, A.; Lamond, T. Carbon black transfer in blends of cis-poly (butadiene) with other elastomers. Rubber Chem. Technol. 1973, 46, 178–191.

    Article  CAS  Google Scholar 

  33. Zaikin, A.; Karimov, R.; Arkhireev, V. A study of the redistribution conditions of carbon black particles from the bulk to the interface in heterogeneous polymer blends. Colloid J. 2001, 63, 53–59.

    Article  CAS  Google Scholar 

  34. Chiu, F. C.; Ting, M. H. Thermal properties and phase morphology of melt-mixed poly(trimethylene terephthalate)/polycarbonate blends — mixing time effect. Polym. Test. 2007, 26, 338–350.

    Article  CAS  Google Scholar 

  35. Zhang, X.; Maira, B.; Hashimoto, Y.; Wada, T.; Chammingkwan, P.; Thakur, A.; Taniike, T. Selective localization of aluminum oxide at interface and its effect on thermal conductivity in polypropylene/polyolefin elastomer blends. Compos. Part B-Eng. 2019, 162, 662–670.

    Article  CAS  Google Scholar 

  36. You, W.; Yu, W. Control of the dispersed-to-continuous transition in polymer blends by viscoelastic asymmetry. Polymer 2018, 134, 254–262.

    Article  CAS  Google Scholar 

  37. Sui, G. P.; Liu, D. Y.; Liu, Y. H.; Ji, W. J.; Zhang, Q.; Fu, Q. The dispersion of CNT in TPU matrix with different preparation methods: solution mixing vs melt mixing. Polymer 2019, 182.

  38. Zhang, L.; Lu, C.; Dong, P.; Wang, K. Realizing self-reinforcement of polyethylene via high-speed shear processing. J. Polym. Res. 2019, 26.

  39. Zhang, L.; Lu, C.; Dong, P.; Wang, K.; Zhang, Q. Realizing mechanically reinforced all-polyethylene material by dispersing UHMWPE via high-speed shear extrusion. Polymer 2019, 180, 121711.

    Article  CAS  Google Scholar 

  40. Elias, L.; Fenouillot, F.; Majeste, J. C.; Alcouffe, P.; Cassagnau, P. Immiscible polymer blends stabilized with nano-silica particles: rheology and effective interfacial tension. Polymer 2008, 49, 4378–4385.

    Article  CAS  Google Scholar 

  41. Gubbels, F.; Jerome, R.; Vanlathem, E.; Deltour, R.; Blacher, S.; Brouers, F. Kinetic and thermodynamic control of the selective localization of carbon black at the interface of immiscible polymer blends. Chem. Mater 1998, 10, 1227–1235.

    Article  CAS  Google Scholar 

  42. Klonos, P.; Dapei, G.; Sulym, I. Y.; Zidropoulos, S.; Sternik, D.; Deryło-Marczewska, A.; Borysenko, M. V.; Gun’ko, V. M.; Kyritsis, A.; Pissis, P. Morphology and molecular dynamics investigation of PDMS adsorbed on titania nanoparticles: Effects of polymer molecular weight. Eur. Polym. J. 2016, 74, 64–80.

    Article  CAS  Google Scholar 

  43. Barthel, H.; Heinemann, M.; Stintz, M.; Wessely, B. Particle sizes of fumed silica. Chem. Eng. Technol. 1998, 21, 745–752.

    Article  CAS  Google Scholar 

  44. Zhang, W.; Zou, X. S.; Wei, F. Y.; Wang, H. L.; Zhang, G. Y.; Huang, Y. W.; Zhang, Y. Grafting SiO2 nanoparticles on polyvinyl alcohol fibers to enhance the interfacial bonding strength with cement. Compos. Part B-Eng. 2019, 162, 500–507.

    Article  CAS  Google Scholar 

  45. Ye, N.; Zheng, J. C.; Ye, X.; Xue, J. J.; Han, D. L.; Xu, H. S.; Wang, Z.; Zhang, L. Q. Performance enhancement of rubber composites using VOC-Free interfacial silica coupling agent. Compos. Part B: Eng. 2020, 202, 108301.

    Article  CAS  Google Scholar 

  46. Shi, Y. Y.; Yang, J. H.; Huang, T.; Zhang, N.; Chen, C.; Wang, Y. Selective localization of carbon nanotubes at the interface of poly(L-lactide)/ethylene-co-vinyl acetate resulting in lowered electrical resistivity. Compos. Part B-Eng. 2013, 55, 463–469.

    Article  CAS  Google Scholar 

  47. Xiu, H.; Qi, X. D.; Bai, H. W.; Zhang, Q.; Fu, Q. Simultaneously improving toughness and UV-resistance of polylactide/titanium dioxide nanocomposites by adding poly(ether)urethane. Polym. Degrad. Stabil. 2017, 143, 136–144.

    Article  CAS  Google Scholar 

  48. Xiu, H.; Qi, X.; Liu, Z.; Zhou, Y.; Bai, H.; Zhang, Q.; Fu, Q. Simultaneously reinforcing and toughening of polylactide/carbon fiber composites via adding small amount of soft poly(ether)urethane. Compos. Sci. Technol. 2016, 127, 54–61.

    Article  CAS  Google Scholar 

  49. Xiu, H.; Zhou, Y.; Dai, J.; Huang, C. M.; Bai, H. W.; Zhang, Q.; Fu, Q. Formation of new electric double percolation via carbon black induced co-continuous like morphology. RSC Adv. 2014, 4, 37193–37196.

    Article  CAS  Google Scholar 

  50. Xiu, H.; Zhou, Y.; Huang, C. M.; Bai, H. W.; Zhang, Q.; Fu, Q. Deep insight into the key role of carbon black self-networking in the formation of co-continuous-like morphology in polylactide/poly(ether)urethane blends. Polymer 2016, 82, 11–21.

    Article  CAS  Google Scholar 

  51. Zhou, Y.; Xiu, H.; Dai, J.; Bai, H. W.; Zhang, Q.; Fu, Q. Largely reinforced polyurethane via simultaneous incorporation of poly(lactic acid) and multiwalled carbon nanotubes. RSC Adv. 2015, 5, 30912–30919.

    Article  CAS  Google Scholar 

  52. Ma, P.; Hristova-Bogaerds, D. G.; Goossens, J. G. P.; Spoelstra, A. B.; Zhang, Y.; Lemstra, P. J. Toughening of poly(lactic acid) by ethylene-co-vinyl acetate copolymer with different vinyl acetate contents. Eur. Polym. J. 2012, 48, 146–154.

    Article  CAS  Google Scholar 

  53. Khanra, S.; Ganguly, D.; Ghorai, S. K.; Goswami, D.; Chattopadhyay, S. The synergistic effect of fluorosilicone and silica towards the compatibilization of silicone rubber and fluoroelastomer based high performance blend. J. Polym. Res. 2020, 27.

  54. Metivier, T.; Cassagnau, P. Compatibilization of silicone/fluorosilicone blends by dynamic crosslinking and fumed silica addition. Polymer 2018, 147, 20–29.

    Article  CAS  Google Scholar 

  55. Kim, H. N.; Park, C. K.; Kim, I. S.; Kim, S. H. Compatibilization of immiscible blends of polypropylene and isosorbide containing copolyester with silica nanoparticles. Polym. Eng. Sci. 2020, 60, 1365–1376.

    Article  CAS  Google Scholar 

  56. Sumita, M.; Sakata, K.; Asai, S.; Miyasaka, K.; Nakagawa, H. Dispersion of fillers and the electrical-conductivity of plymer blends filled with carbon-black. Polym. Bull. 1991, 25, 265–271.

    Article  CAS  Google Scholar 

  57. Bose, S.; Bhattacharyya, A. R.; Kodgire, P. V.; Misra, A. Fractionated crystallization in PA6/ABS blends: Influence of a reactive compatibilizer and multiwall carbon nanotubes. Polymer 2007, 48, 356–362.

    Article  CAS  Google Scholar 

  58. Wu, S. C. Polymer Interface and Adhesion. CRC Press, 1982.

  59. Lapčík, L.; Otyepka, M.; Otyepková, E.; Lapčíková, B.; Gabriel, R.; Gavenda, A.; Prudilová, B. Surface heterogeneity: information from inverse gas chromatography and application to model pharmaceutical substances. Curr. Opin. Colloid In. 2016, 44, 64–71.

    Article  CAS  Google Scholar 

  60. Otsuka, H.; Nagasaki, Y.; Kataoka, K. Dynamic wettability study on the functionalized PEGylated layer on a polylactide surface constructed by the coating of aldehyde-ended poly(ethylene glycol) (PEG)/polylactide (PLA) block copolymer. Sci. Technol. Adv. Mater. 2000, 1, 21–29.

    Article  CAS  Google Scholar 

  61. Guo, J. M.; Bian, L. C.; Gao, M. Modeling of nonlinear thermal conduction coefficients of three-phase composites. Appl. Phys. A 2018, 124, 867.

    Article  CAS  Google Scholar 

  62. Katada, A.; Buys, Y. F.; Tominaga, Y.; Asai, S.; Sumita, M. Relationship between electrical resistivity and particle dispersion state for carbon black filled poly(ethylene-co-vinyl acetate)/poly(L-lactic acid) blend. Colloid Polym. Sci. 2005, 284, 134–141.

    Article  CAS  Google Scholar 

  63. AG, E. I. Silica Business Line: AEROSIL® — Fumed Silica Technical Overview.

  64. Ibarra-Gómez, R.; Márquez, A.; Ramos-de Valle, L. F.; Rodríguez-Fernández, O. S. Influence of the blend viscosity and interface energies on the preferential location of CB and conductivity of BR/EPDM blends. Rubber Chem. Technol. 2003, 76, 969–978.

    Article  Google Scholar 

  65. Garlotta, D. A Literature review of poly(lactic acid). J. Polym. Environ. 2001, 9, 63–84.

    Article  CAS  Google Scholar 

  66. Dil, E. J.; Favis, B. D. Localization of micro- and nano-silica particles in heterophase poly(lactic acid)/poly(butylene adipateco-terephthalate) blends. Polymer 2015, 76, 295–306.

    Article  CAS  Google Scholar 

  67. Suzuki, N.; Yatsuyanagi, F.; Ito, M.; Kaidou, H. Effects of surface chemistry of silica particles on secondary structure and tensile properties of silica-filled rubber systems. J. Appl. Polym. Sci. 2002, 86, 1622–1629.

    Article  CAS  Google Scholar 

  68. Wang, M. J.; Morris, M. D.; Kutsovsky, Y. Effect of fumed silica surface area on silicone rubber reinforcement. Kautschuk Gummi Kunststoffe 2008, 61, 107–117.

    Google Scholar 

  69. Yue, Y. L.; Zhang, H.; Zhang, Z.; Chen, Y. F. Polymer-filler interaction of fumed silica filled polydimethylsiloxane investigated by bound rubber. Compos. Sci. Technol. 2013, 86, 1–8.

    Article  CAS  Google Scholar 

  70. Moller, K.; Kobler, J.; Bein, T. Colloidal suspensions of nanometer-sized mesoporous silica. Adv. Funct. Mater. 2007, 17, 605–612.

    Article  CAS  Google Scholar 

  71. Nofar, M.; Salehiyan, R.; Ciftci, U.; Jalali, A.; Durmus, A. Ductility improvements of PLA-based binary and ternary blends with controlled morphology using PBAT, PBSA, and nanoclay. Compos. Part B-Eng. 2020, 182.

  72. Wang, J. F.; Jin, X. X.; Li, C. H.; Wang, W. J.; Wu, H.; Guo, S. Y. Graphene and graphene derivatives toughening polymers: Toward high toughness and strength. Chem. Eng. J. 2019, 370, 831–854.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank for the assistance with TEM experiments of the Sichuan University Analytical & Testing Center and Dr. Guiping Yuan. This work was financially supported by the National Natural Science Foundation of China (No. 51803130), China Postdoctoral Science Foundation (No. 2018M640915), Sichuan Science and Technology Program (No. 2019JDRC010) and Fundamental Research Funds for Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao Xiu or Qiang Fu.

Electronic Supplementary Material

10118_2021_2565_MOESM1_ESM.pdf

Improving Impact Toughness of Polylactide/Ethylene-co-vinyl-acetate Blends via Adding Fumed Silica Nanoparticles: Effects of Specific Surface Area Dependent Selective Distribution of Silica

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, TT., Zhou, MX., Guo, ZY. et al. Improving Impact Toughness of Polylactide/Ethylene-co-vinyl-acetate Blends via Adding Fumed Silica Nanoparticles: Effects of Specific Surface Area-dependent Interfacial Selective Distribution of Silica. Chin J Polym Sci 39, 1040–1049 (2021). https://doi.org/10.1007/s10118-021-2565-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2565-4

Keywords

Navigation