Finely Tuned Electron/Hole Transport Preference of Thiazoloisoindigo-based Conjugated Polymers by Incorporation of Heavy Chalcogenophenes

Abstract

A series of copolymers of thiazoloisoindigo (TzII) with different chalcogenophene trimers were synthesized to systematically investigate the chalcogen effect on their charge transport properties. When only the middle thiophene ring of terthiphene (T-T-T) is replaced by heavier chalcogenophenes, a preference (expressed by the ratio of μe/μh) towards electron transport was observed descending from T-T-T to T-Se-T then to T-Te-T (Se and Te stand for selenophene and tellurophene, respectively). On the other hand, with the increased number of heavier chalcogenophenes, a preference toward hole transport was observed descending from Se-T-Se to Se-Se-Se then to Se-Te-Se. This phenomenon is well-explained by the balance between the aromatic resonance energy of the chalcogenophenes and the electronegativity of the chalcogens. Specifically, P(TzII-T-Se-T) displayed relatively balanced ambipolar property (μ maxh and μ maxe of 3.77 and 1.59 cm2·V−1·s−1 with a μe/μh of 0.42), while P(Tzll-Se-Te-Se) exhibited the best preference to hole transfer with a μe/μh of 0.09. P(Tzll-T-Te-T) exhibited the best preference to electron transfer with a μe/μh, of 16 and the μ maxe of 0.64 cm2·V−1·s−1 which is the highest electron mobility among the known conjugated polymers containing tellurophenes.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Planells, M.; Schroeder, B. C.; McCulloch, I. Effect of chalcogen atom substitution on the optoelectronic properties in cyclopentadithiophene polymers. Macromolecules 2014, 47, 5889–5894.

    CAS  Article  Google Scholar 

  2. 2

    Lee, J.; Han, A. R.; Kim, J.; Kim, Y.; Oh, J. H.; Yang, C. Solution-processable ambipolar diketopyrrolopyrrole-selenophene polymer with unprecedentedly high hole and electron mobilities. J. Am. Chem. Soc. 2012, 134, 20713–20721.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. 3

    Hendriks, K. H.; Li, W.; Wienk, M. M.; Janssen, R. A. J. Small-bandgap semiconducting polymers with high near-infrared photoresponse. J. Am. Chem. Soc. 2014, 136, 12130–12136.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  4. 4

    Chen, Z.; Lemke, H.; Albert-Seifried, S.; Caironi, M.; Nielsen, M. M.; Heeney, M.; Zhang, W.; McCulloch, I.; Sirringhaus, H. High mobility ambipolar charge transport in polyselenophene conjugated polymers. Adv. Mater. 2012, 22, 2371–2375.

    Article  CAS  Google Scholar 

  5. 5

    Kim, Y. M.; Lim, E.; Kang, I. N.; Jung, B. J.; Lee, J.; Koo, B. W.; Do, L. M.; Shim, H. K. Solution-processable field-effect transistor using a fluorene- and selenophene-based copolymer as an active layer. Macromolecules 2006, 39, 4081–4085.

    CAS  Article  Google Scholar 

  6. 6

    Kong, H.; Chung, D. S.; Kang, I. N.; Park, J. H.; Park, M. J.; Jung, I. H.; Park, C. E.; Shim, H. K. New selenophene-based semiconducting copolymers for high performance organic thin-film transistors. J. Mater. Chem. 2009, 19, 3490–3499.

    CAS  Article  Google Scholar 

  7. 7

    Al-Hashimi, M.; Han, Y.; Smith, J.; Bazzi, H. S.; Alqaradawi, S. Y. A.; Watkins, S. E.; Anthopoulos, T. D.; Heeney, M. Influence of the heteroatom on the optoelectronic properties and transistor performance of soluble thiophene-, selenophene- and tellurophene-vinylene copolymers. Chem. Sci. 2016, 7, 1093–1099.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. 8

    Huang, F. B. Z. S.; Geng, Y. H.; Wang, X. H.; Wang, L. X.; Ma, Y. G.; Hou, J. H.; Hu, W. P.; Pei, J.; Dong, H. L.; Wang, S.; Li, Z.; Shuai, Z. G.; Li, Y. F.; Cao, Y. Study on optoelectronic polymers: an overview and outlook. Acta Polymerica Sinica (in Chinese) 2019, 50, 988–1046.

    Google Scholar 

  9. 9

    Ni, Z.; Dong, H.; Wang, H.; Ding, S.; Zou, Y.; Zhao, Q.; Zhen, Y.; Liu, F.; Jiang, L.; Hu, W. Quinoline-flanked diketopyrrolopyrrole copolymers breaking through electron mobility over 6 cm2·V−1·s−1 in flexible thin film devices. Adv. Mater. 2018, 350, 1704843.

    Article  CAS  Google Scholar 

  10. 10

    Ni, Z.; Wang, H.; Dong, H.; Dang, Y.; Zhao, Q.; Zhang, X.; Hu, W. Mesopolymer synthesis by ligand-modulated direct arylation polycondensation towards n-type and ambipolar conjugated systems. Nat. Chem. 2019, 11, 271–277.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11

    Ni, Z.; Wang, H.; Zhao, Q.; Zhang, J.; Wei, Z.; Dong, H.; Hu, W. Ambipolar conjugated polymers with ultrahigh balanced hole and electron mobility for printed organic complementary logic via a two-step CH activation strategy. Adv. Mater. 2019, 31, 1806010.

    Article  CAS  Google Scholar 

  12. 12

    Yang, J.; Zhao, Z.; Wang, S.; Guo, Y.; Liu, Y. Insight into high-performance conjugated polymers for organic field-effect transistors. Chem 2018, 4, 2748–2785.

    CAS  Article  Google Scholar 

  13. 13

    Sung, M. J.; Luzio, A.; Park, W. T.; Kim, R.; Gann, E.; Maddalena, F.; Pace, G.; Xu, Y.; Natali, D.; de Falco, C.; Dang, L.; McNeill, C. R.; Caironi, M.; Noh, Y. Y.; Kim, Y. H. High-mobility naphthalene diimide and selenophene-vinylene-selenophene-based conjugated polymer: n-channel organic field-effect transistors and structure-property relationship. Adv. Fcnat. Mater. 2016, 26, 4984–4997.

    CAS  Article  Google Scholar 

  14. 14

    Zhao, Z.; Yin, Z.; Chen, H.; Zheng, L.; Zhu, C.; Zhang, L.; Tan, S.; Wang, H.; Guo, Y.; Tang, Q.; Liu, Y. High-performance, air-stable field-effect transistors based on heteroatom-substituted naphthalenediimide-benzothiadiazole copolymers exhibiting ultrahigh electron mobility up to 8.5 cm2·V−1·s−1. Adv. Mater. 2017, 29, 1602410.

    Article  CAS  Google Scholar 

  15. 15

    Yang, L.; Gu, W.; Lv, L.; Chen, Y.; Yang, Y.; Ye, P.; Wu, J.; Hong, L.; Peng, A.; Huang, H. Triplet tellurophene-based acceptors for organic solar cells. Angew. Chem. Int. Ed. 2018, 54, 1096–1102.

    Article  CAS  Google Scholar 

  16. 16

    Jung, E. H.; Bae, S.; Yoo, T. W.; Jo, W. H. The effect of different chalcogenophenes in isoindigo-based conjugated copolymers on photovoltaic properties. Polym. Chem. 2014, 5, 6545–6550.

    CAS  Article  Google Scholar 

  17. 17

    Park, K. H.; Cheon, K. H.; Lee, Y. J.; Chung, D. S.; Kwon, S. K.; Kim, Y. H. Isoindigo-based polymer field-effect transistors: effects of selenophene-substitution on high charge carrier mobility. Chem. Commun. 2015, 51, 8120–8122.

    CAS  Article  Google Scholar 

  18. 18

    Kang, I.; Yun, H. J.; Chung, D. S.; Kwon, S. K.; Kim, Y. H. Record high hole mobility in polymer semiconductors via side-chain engineering. J. Am. Chem. Soc. 2013, 135, 14896–14899.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19

    Kim, K. H.; Park, S.; Yu, H.; Kang, H.; Song, I.; Oh, J. H.; Kim, B. J. Determining optimal crystallinity of diketopyrrolopyrrole-based terpolymers for highly efficient polymer solar cells and transistors. Chem. Mater. 2014, 26, 6963–6970.

    CAS  Article  Google Scholar 

  20. 20

    Kaur, M.; Yang, D. S.; Shin, J.; Lee, T. W.; Choi, K.; Cho, M. J.; Choi, D. H. A novel tellurophene-containing conjugated polymer with a dithiophenyl diketopyrrolopyrrole unit for use in organic thin film transistors. Chem. Commun. 2013, 49, 5495–5497.

    CAS  Article  Google Scholar 

  21. 21

    Kaur, M.; Lee, D. H.; Yang, D. S.; Um, H. A.; Cho, M. J.; Kang, J. S.; Choi, D. H. Diketopyrrolopyrrole-bitellurophene containing a conjugated polymer and its high performance thin-film transistor sensor for bromine detection. Chem. Commun. 2014, 55, 14394–14396.

    Article  Google Scholar 

  22. 22

    Ashraf, R. S.; Meager, I.; Nikolka, M.; Kirkus, M.; Planells, M.; Schroeder, B. C.; Holliday, S.; Hurhangee, M.; Nielsen, C. B.; Sirringhaus, H.; McCulloch, I. Chalcogenophene comonomer comparison in small band gap diketopyrrolopyrrole-based conjugated polymers for high-performing field-effect transistors and organic solar cells. J. Am. Chem. Soc. 2015, 137, 1314–1321.

    CAS  PubMed  Article  Google Scholar 

  23. 23

    Shi, L.; Guo, Y.; Hu, W.; Liu, Y. Design and effective synthesis methods for high-performance polymer semiconductors in organic field-effect transistors. Mater. Chem. Front. 2017, 1, 2423–2456.

    CAS  Article  Google Scholar 

  24. 24

    Quinn, J. T. E.; Zhu, J.; Li, X.; Wang, J.; Li, Y. Recent progress in the development of n-type organic semiconductors for organic field effect transistors. J. Mater. Chem. C 2017, 5, 8654–8681.

    CAS  Article  Google Scholar 

  25. 25

    Wang, E. G.; Mammo, W.; Andersson, M. R. 25th Anniversary article: isoindigo- based polymers and small molecules for bulk heterojunction solar cells and field effect transistors. Adv. Mater. 2014, 26, 1801–1826.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26

    Lei, T.; Wang, J. Y.; Pei, J. Design, synthesis, and structure-property relationships of isoindigo-based conjugated polymers. Acc. Chem. Res. 2014, 47, 1117–1126.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27

    Lei, T.; Dou, J. H.; Ma, Z. J.; Yao, C. H.; Liu, C. J.; Wang, J. Y.; Pei, J. Ambipolar polymer field-effect transistors based on fluorinated isoindigo: high performance and improved ambient stability. J. Am. Chem. Soc. 2012, 134, 20025–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28

    Kim, G.; Kang, S. J.; Dutta, G. K.; Han, Y. K.; Shin, T. J.; Noh, Y. Y.; Yang, C. A Thienoisoindigo-naphthalene polymer with ultrahigh mobility of 14.4 cm2/V·s that substantially exceeds benchmark values for amorphous silicon semiconductors. J. Am. Chem. Soc. 2014, 136, 9477–9483.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29

    Huang, J.; Mao, Z.; Chen, Z.; Gao, D.; Wei, C.; Zhang, W.; Yu, G. Diazaisoindigo-based polymers with high-performance charge-transport properties: from computational screening to experimental characterization. Chem. Mater. 2016, 28, 2209–2218.

    CAS  Article  Google Scholar 

  30. 30

    Lin, H. W.; Lee, W. Y.; Chen, W. C. Selenophene-DPP donor-acceptor conjugated polymer for high performance ambipolar field effect transistor and nonvolatile memory applications. J. Mater. Chem. 2012, 22, 2120–2128.

    CAS  Article  Google Scholar 

  31. 31

    Wang, Z.; Liu, Z.; Ning, L.; Xiao, M.; Yi, Y.; Cai, Z.; Sadhanala, A.; Zhang, G.; Chen, W.; Sirringhaus, H.; Zhang, D. Charge mobility enhancement for conjugated DPP-selenophene polymer by simply replacing one bulky branching alkyl chain with linear one at each DPP unit. Chem. Mater. 2018, 39, 3090–3100.

    Article  CAS  Google Scholar 

  32. 32

    Back, J. Y.; Yu, H.; Song, I.; Kang, I.; Ahn, H.; Shin, T. J.; Kwon, S. K.; Oh, J. H.; Kim, Y. H. Investigation of structure-property relationships in diketopyrrolopyrrole-based polymer semiconductors via side-chain engineering. Chem. Mater. 2015, 27, 1732–1739.

    CAS  Article  Google Scholar 

  33. 33

    Han, A. R.; Dutta, G. K.; Lee, J.; Lee, H. R.; Lee, S. M.; Ahn, H.; Shin, T. J.; Oh, J. H.; Yang, C. ε-Branched flexible side chain substituted diketopyrrolopyrrole-containing polymers designed for high hole and electron mobilities. Adv. Funct. Mater. 0015, 55, 247–254.

    Google Scholar 

  34. 34

    Um, H. A.; Lee, D. H.; Heo, D. U.; Yang, D. S.; Shin, J.; Baik, H.; Cho, M. J.; Choi, D. H. High aspect ratio conjugated polymer nanowires for high performance field-effect transistors and phototransistors. ACS Nano 2015, 9, 5264–5274.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35

    Khim, D.; Cheon, Y. R.; Xu, Y.; Park, W. T.; Kwon, S. K.; Noh, Y. Y.; Kim, Y. H. Facile route to control the ambipolar transport in semiconducting polymers. Chem. Mater. 2016, 28, 2287–2294.

    CAS  Article  Google Scholar 

  36. 36

    Lei, T.; Cao, Y.; Zhou, X.; Peng, Y.; Bian, J.; Pei, J. Systematic investigation of isoindigo-based polymeric field-effect transistors: design strategy and impact of polymer symmetry and backbone curvature. Chem. Mater. 2012, 24, 1762–1770.

    CAS  Article  Google Scholar 

  37. 37

    Huang, J.; Chen, Z.; Mao, Z.; Gao, D.; Wei, C.; Lin, Z.; Li, H.; Wang, L.; Zhang, W.; Yu, G. Tuning frontier orbital energetics of azaisoindigo-based polymeric semiconductors to enhance the charge-transport properties. Adv. Electron. Mater. 2017, 3, 1700078.

    Article  CAS  Google Scholar 

  38. 38

    Wood, S.; Wade, J.; Shahid, M.; Collado-Fregoso, E.; Bradley, D. D. C.; Durrant, J. R.; Heeney, M.; Kim, J. S. Natures of optical absorption transitions and excitation energy dependent photostability of diketopyrrolopyrrole (DPP)-based photovoltaic copolymers. Energ. Environ. Sci. 2015, 8, 3222–3232.

    CAS  Article  Google Scholar 

  39. 39

    Lee, T. W.; Lee, D. H.; Shin, J.; Cho, M. J.; Choi, D. H. π-Conjugated polymers derived from 2,5-bis-(2-decyltetradecyl)-3,6-di(selenophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione for high-performance thin film transistors. Polym. Chem. 2015, 6, 1777–1785.

    CAS  Article  Google Scholar 

  40. 40

    Li, C.; Zhang, H.; Mirie, S.; Peng, J.; Cai, M.; Wang, X.; Lan, Z.; Wan, X. A new approach to thiazoloisoindigo and derivatives using a lithium tetramethylpiperidine promoted cyclization to thiazoloisatin. Org. Chem. Front. 2018, 5, 442–446.

    CAS  Article  Google Scholar 

  41. 41

    Li, C.; Un, H. I.; Peng, J.; Cai, M.; Wang, X.; Wang, J.; Lan, Z.; Pei, J.; Wan, X. Thiazoloisoindigo: a building block that merges the merits of thienoisoindigo and diazaisoindigo for conjugated polymers. Chem. Eur. J. 2018, 24, 9807–9811.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. 42

    Bredas, J. L. Mind the gap! Mater. Horiz. 2014, 1, 17–19.

    CAS  Article  Google Scholar 

  43. 43

    Vessally, E. Aromatic stability energy studies on five-membered heterocyclic C4H4M (M = O, S, Se, Te, NH, PH, AsH and SbH): DFT calculations. J. Struct. Chem. 2008, 49, 979–985.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We thank the research financial support from the National Natural Science Foundation of China (Nos. 22075105 and 51573204) and National Science Foundation of Shandong Province (No. ZR2018ZB0315). H. Zhang thanks the financial support from the National Natural Science Foundation of China (No. 51803230). Prof. J. Wang thanks the financial support from the Opening Project of Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University. The authors thank Dr. Chunming Yang for GIWAXS tests and beamline BL16B1 (Shanghai Synchrotron Radiation Facility) for providing beam time.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to You-Bing Mu or Xiao-Bo Wan.

Electronic Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, CC., Xiong, M., Peng, JW. et al. Finely Tuned Electron/Hole Transport Preference of Thiazoloisoindigo-based Conjugated Polymers by Incorporation of Heavy Chalcogenophenes. Chin J Polym Sci (2021). https://doi.org/10.1007/s10118-021-2552-9

Download citation

Keywords

  • Thiazoloisoindigo
  • Copolymers
  • Charge transport properties
  • Chalcogenophene trimers