Influence of Liquid Isoprene Rubber on Strain Softening of Carbon Black Filled Isoprene Rubber Nanocomposites


The reinforcement of rubbers by nanoparticles is always accompanied with enhanced dissipation of mechanical energy upon large deformations. Methods for solving the contradiction between improving reinforcement and reducing energy dissipation for rubber nanocomposites have not been well developed. Herein carbon black (CB) filled isoprene rubber (IR)/liquid isoprene rubber (LR) blend nanocomposites with similar crosslink density (ve) are prepared and influence of LR on the strain softening behaviors including Payne effect under large amplitude shear deformation and Mullins effect under cyclic uniaxial deformation is investigated. The introduction of LR could improve the frequency sensitivity of loss modulus and reduce critical strain amplitude for Payne effect and loss modulus at the low amplitudes. Meanwhile, tuning ve and LR content allows reducing mechanical hysteresis in Mullins effect without significant impact on the mechanical performances. The investigation is illuminating for manufacturing nanocomposite vulcanizates with balanced mechanical hysteresis and reinforcement effect.

This is a preview of subscription content, access via your institution.


  1. 1

    Guth, E. Theory of filler reinforcement. J. Appl. Phys. 1945, 16, 20–25.

    CAS  Article  Google Scholar 

  2. 2

    Mooney, M. The viscosity of a concentrated suspension of spherical particles. J. Colloid Sci. 1951, 6, 162–170.

    CAS  Article  Google Scholar 

  3. 3

    Krieger, I. M. Rheology of monodisperse latices. Adv. Colloid Interface Sci. 1972, 3, 111–136.

    CAS  Article  Google Scholar 

  4. 4

    Schroyen, B.; Swan, J. W.; van Puyvelde, P.; Vermant, J. Quantifying the dispersion quality of partially aggregated colloidal dispersions by high frequency rheology. Soft Matter 2017, 13, 7897–7906.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. 5

    Kraus, G. Mechanical losses in carbon-black-filled rubbers. Appl. Polym. Symp. 1984, 75–92.

  6. 6

    Zhu, Z.; Thompson, T.; Wang, S. Q.; Von Meerwall, E. D.; Halasa, A. Investigating linear and nonlinear viscoelastic behavior using model silica-particle-filled polybutadiene. Macromolecules 2005, 38, 8816–8824.

    CAS  Article  Google Scholar 

  7. 7

    Lewicki, J. P.; Maxwell, R. S.; Patel, M.; Herberg, J. L.; Swain, A. C.; Liggat, J. J.; Pethrick, R. A. Effect of meta-carborane on segmental dynamics in a bimodal poly(dimethylsiloxane) network. Macromolecules 2008, 41, 9179–9186.

    CAS  Article  Google Scholar 

  8. 8

    Song, Y.; Zheng, Q. Concepts and conflicts in nanoparticles reinforcement to polymers beyond hydrodynamics. Prog. Mater. Sci. 2016, 84, 1–58.

    CAS  Article  Google Scholar 

  9. 9

    Payne, A. R.; Whittaker, R. E. Low strain dynamic properties of filled rubbers. Rubber Chem. Technol. 1971, 44, 440–478.

    CAS  Article  Google Scholar 

  10. 10

    Payne, A. R.; Whittake, R. E. Effect of vulcanization on low-strain dynamic properties of filled rubbers. J. Appl. Polym. Sci. 1972, 16, 1191–1212.

    CAS  Article  Google Scholar 

  11. 11

    Diani, J.; Fayolle, B.; Gilormini, P. A review on the Mullins effect. Eur. Polym. J. 2009, 45, 601–612.

    CAS  Article  Google Scholar 

  12. 12

    Nagaraja, S. M.; Mujtaba, A.; Beiner, M. Quantification of different contributions to dissipation in elastomer nanoparticle composites. Polymer 2017, 111, 48–52.

    CAS  Article  Google Scholar 

  13. 13

    Robertson, C. G.; Wang, X. Isoenergetic jamming transition in particle-filled systems. Phys. Rev. Lett. 2005, 95, 075703.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  14. 14

    Zhao, D.; Ge, S.; Senses, E.; Akcora, P.; Jestin, J.; Kumar, S. K. Role of filler shape and connectivity on the viscoelastic behavior in polymer nanocomposites. Macromolecules 2015, 48, 5433–5438.

    CAS  Article  Google Scholar 

  15. 15

    Cassagnau, P. Melt rheology of organoclay and fumed silica nanocomposites. Polymer 2008, 49, 2183.

    CAS  Article  Google Scholar 

  16. 16

    Merabia, S.; Sotta, P.; Long, D. R. A microscopic model for the reinforcement and the nonlinear behavior of filled elastomers and thermoplastic elastomers (Payne and Mullins effects). Macromolecules 2008, 41, 8252–8266.

    CAS  Article  Google Scholar 

  17. 17

    Majesté, J. C.; Vincent, F. A kinetic model for silica-filled rubber reinforcement. J. Rheol. 2015, 59, 405–427.

    Article  CAS  Google Scholar 

  18. 18

    Sternstein, S. S.; Zhu, A. J. Reinforcement mechanism of nanofilled polymer melts as elucidated by nonlinear viscoelastic behavior. Macromolecules 2002, 35, 7262–7273.

    CAS  Article  Google Scholar 

  19. 19

    Li, Z.; Xu, H.; Xia, X.; Song, Y.; Zheng, Q. Energy dissipation accompanying Mullins effect of nitrile butadiene rubber/carbon black nanocomposites. Polymer 2019, 171, 106–114.

    CAS  Article  Google Scholar 

  20. 20

    Hou, F.; Song, Y.; Zheng, Q. Payne effect of thermo-oxidatively aged isoprene rubber vulcanizates. Polymer 2020, 195, 122432.

    CAS  Article  Google Scholar 

  21. 21

    Xu, H.; Xia, X.; Hussain, M.; Song, Y.; Zheng, Q. Linear and nonlinear rheological behaviors of silica filled nitrile butadiene rubber. Polymer 2018, 156, 222–227.

    CAS  Article  Google Scholar 

  22. 22

    Li, Z.; Wen, F.; Hussain, M.; Song, Y.; Zheng, Q. Scaling laws of Mullins effect in nitrile butadiene rubber nanocomposites. Polymer 2020, 193, 122350.

    CAS  Article  Google Scholar 

  23. 23

    Acosta, R. H.; Monti, G. A.; Villar, M. A.; Valles, E. M.; Vega, D. A. Transiently trapped entanglements in model polymer networks. Macromolecules 2009, 42, 4674–4680.

    CAS  Article  Google Scholar 

  24. 24

    Agudelo, D. C.; Roth, L. E.; Vega, D. A.; Valles, E. M.; Villar, M. A. Dynamic response of transiently trapped entanglements in polymer networks. Polymer 2014, 55, 1061–1069.

    CAS  Article  Google Scholar 

  25. 25

    Chasse, W.; Lang, M.; Sommer, J. U.; Saalwachter, K. Cross-link density estimation of PDMS networks with precise consideration of networks defects. Macromolecules 2012, 45, 899–912.

    CAS  Article  Google Scholar 

  26. 26

    Campise, F.; Roth, L. E.; Acosta, R. H.; Villiar, M. A.; Valles, E. M.; Monti, G. A.; Vega, D. A. Contribution of linear guest and structural pendant chains to relaxational dynamics in model polymer networks probed by time-domain 1H NMR. Macromolecules 2016, 49, 387–394.

    CAS  Article  Google Scholar 

  27. 27

    Batra, A.; Cohen, C.; Archer, L. Stress relaxation of end-linked polydimethylsiloxane elastomers with long pendent chains. Macromolecules 2005, 38, 7174–7180.

    CAS  Article  Google Scholar 

  28. 28

    Vega, D. A.; Villar, M. A.; Alessandrini, J. L.; Valles, E. M. Terminal relaxation of model poly(dimethylsiloxane) networks with pendant chains. Macromolecules 2001, 34, 4591–4596.

    CAS  Article  Google Scholar 

  29. 29

    Yamazaki, H.; Takeda, M.; Kohno, Y.; Ando, H.; Urayama, K.; Takigawa, T. Dynamic viscoelasticity of poly(butyl acrylate) elastomers containing dangling chains with controlled lengths. Macromolecules 2011, 44, 8829–8834.

    CAS  Article  Google Scholar 

  30. 30

    Urayama, K.; Miki, T.; Takigawa, T.; Kobjiya, S. Damping elastomer based on model irregular networks of end-linked poly(dimethylsiloxane). Chem. Mater. 2004, 16, 173–178.

    CAS  Article  Google Scholar 

  31. 31

    Li, Z.; Lu, X.; Tao, G.; Guo, J.; Jiang, H. Damping elastomer with broad temperature range based on irregular networks formed by end-linking of hydroxyl-terminated poly(dimethylsiloxane). Polym. Eng. Sci. 2016, 56, 97–102.

    CAS  Article  Google Scholar 

  32. 32

    Yasuda, Y.; Minoda, S.; Ohashi, T.; Yokohama, H.; Ikeda, Y. Two-phase network formation in sulfur crosslinking reaction of isoprene rubber. Macromol. Chem. Phys. 2014, 215, 971–977.

    CAS  Article  Google Scholar 

  33. 33

    Ikeda, Y.; Higashitani, N.; Hijikata, K.; Kokubo, Y.; Morita, Y.; Shibayama, M.; Osaka, N.; Suzuki, T.; Endo, H.; Kohjiya, S. Vulcanization: new focus on a traditional technology by small-angle neutron scattering. Macromolecules 2009, 42, 2741–2748.

    CAS  Article  Google Scholar 

  34. 34

    Glebova, Y.; Reiter-Scherer, V.; Suvanto, S.; Korpela, T.; Pakkanen, T. T.; Severin, N.; Shershnev, V.; Rabe, J. P. Nano-mechanical imaging reveals heterogeneous cross-link distribution in sulfur-vulcanized butadiene-styrene rubber comprising ZnO particles. Polymer 2016, 107, 102–107.

    CAS  Article  Google Scholar 

  35. 35

    Li, J.; Isayev, A. I.; Ren, X.; Soucek, M. D. Modified soybean oil-extended SBR compounds and vulcanizates filled with carbon black. Polymer 2015, 60, 144–156.

    CAS  Article  Google Scholar 

  36. 36

    Betron, C.; Cassagnau, P.; Bounor-Legare, V. Control of diffusion and exudation of vegetable oils in EPDM copolymers. Eur. Polym. J. 2016, 82, 102–113.

    CAS  Article  Google Scholar 

  37. 37

    Li, Z.; Ren, W.; Chen, H.; Ye, L.; Zhang, Y. Effect of liquid isoprene rubber on dynamic mechanical properties of emulsion polymerized styrene/butadiene rubber vulcanizates. Polym. Int. 2012, 61, 531–538.

    CAS  Article  Google Scholar 

  38. 38

    Ren, Y.; Zhao, S.; Li, Q.; Zhang, X.; Zhang, L. Influence of liquid isoprene on rheological behavior and mechanical properties of polyisoprene rubber. J. Appl. Polym. Sci. 2015, 132, 41485.

    Article  CAS  Google Scholar 

  39. 39

    Gruendken, M.; Velencoso, M. M.; Hirata, K.; Blume, A. Structure-propery relationship of low molecular weight ‘liquid’ polymers in blends of sulfur cured SSBR-rich compounds. Polym. Test. 2020, 87, 106558.

    CAS  Article  Google Scholar 

  40. 40

    Horkay, F.; Mckenna, G. B.; Deschamps, P.; Geissler, E. Neutron scattering properties of randomly cross-linked polyisoprene gels. Macromolecules 2000, 33, 5215–5220.

    CAS  Article  Google Scholar 

  41. 41

    Senses, E.; Akcora, P. Tuning mechanical properties of nanocomposites with bimodal polymer bound layers. RSC Adv. 2014, 4, 49628–49634.

    CAS  Article  Google Scholar 

  42. 42

    Liu, J.; Wu, Y.; Shen, J.; Gao, Y.; Zhang, L.; Cao, D. Polymer-nanoparticle interfacial behavior revisited: a molecular dynamics study. Phys. Chem. Chem. Phys. 2011, 13, 13058–13069.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. 43

    Karatrantos, A.; Clarke, N. A theoretical model for the prediction of diffusion in polymer/SWCNT nanocomposites. Soft Matter 2011, 7, 7334–7341.

    CAS  Article  Google Scholar 

  44. 44

    Zheng, X.; Sauer, B. B.; Vanalsten, J. G.; Schwarz, S. A.; Rafailovich, M. H.; Sokolov, J.; Rubinstein, M. Reptation dynamics of a polymer melt near an attractive solid interface. Phys. Rev. Lett. 1995, 74, 407–410.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. 45

    Baeza, G. P.; Dalmas, F.; Dutertre, F.; Majeste, J. C. Isostructural softening of vulcanized nanocomposites. Soft Matter 2020, 16, 3180–3186.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46

    Trinh, G. H.; Desloir, M.; Dutertre, F.; Majeste, J. C.; Dalmas, F.; Baeza, G. P. Isostructural softening of the filler network in SBR/silica nanocomposites. Soft Matter 2019, 15, 3122–3132.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. 47

    Zhang, Q.; Xu, H.; Song, Y.; Zheng, Q. Influence of hydroxyl-terminated polybutadiene liquid on rheology of fumed silica filled cis-polybutadiene rubber. Polymer 2019, 180, 121709.

    Article  CAS  Google Scholar 

  48. 48

    Xu, H.; Ding, L.; Song, Y.; Wang, W. Rheology of end-linking polydimethylsiloxane networks filled with silica. J. Rheol. 2020, 64, 1425–1438.

    CAS  Article  Google Scholar 

  49. 49

    Subbotin, A.; Semenov, A.; Hadziioannou, G.; ten Brinke, G. Nonlinear rheology of confined polymer melts under oscillatory flow. Macromolecules 1996, 29, 1296–1304.

    CAS  Article  Google Scholar 

  50. 50

    Sarvestani, A. S. Nonlinear rheology of unentangled polymer melts reinforced with high concentration of rigid nanoparticles. Nanoscale Res. Lett. 2010, 5, 791–794.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. 51

    Fu, W.; Wang, L.; Huang, J.; Liu, C.; Peng, W.; Xiao, H.; Li, S. Mechanical properties and Mullins effect in natural rubber reinforced by grafted carbon black. Adv. Polym. Tech. 2019, 2019, 4523696.

    Article  CAS  Google Scholar 

  52. 52

    Sodhani, D.; Reese, S. Finite element-based micromechanical modeling of microstructure morphology in filler-reinforced elastomer. Macromolecules 2014, 47, 3161–3169.

    CAS  Article  Google Scholar 

  53. 53

    Stöckelhuber, K. W.; Svistkov, A. S.; Pelevin, A. G.; Heinrich, G. Impact of filler surface modification on large scale mechanics of styrene butadiene/silica rubber composites. Macromolecules 2011, 44, 4366–4381.

    Article  CAS  Google Scholar 

  54. 54

    Yatsuyanagi, F.; Suzuki, N.; Ito, M.; Kaidou, H. Effects of secondary structure of fillers on the mechanical properties of silica filled rubber systems. Polymer 2001, 42, 9523–9529.

    CAS  Article  Google Scholar 

  55. 55

    Bhattacharyya, S.; Sinturel, C.; Bahloul, O.; Saboungi, M. L.; Thomas, S.; Salvetat, J. P. Improving reinforcement of natural rubber by networking of activated carbon nanotubes. Carbon 2008, 46, 1037–1045.

    CAS  Article  Google Scholar 

  56. 56

    Meissner, B.; Matějka, L. A structure-based constitutive equation for filler-reinforced rubber-like networks and for the description of the Mullins effect. Polymer 2006, 47, 7997–8012.

    CAS  Article  Google Scholar 

Download references


This work was financially supported by the National Natural Science Foundation of China (Nos. U1908221, 51873190 and 51790503) and the Fundamental Research Funds for the Central Universities (No. 2020XZZX002-08).

Author information



Corresponding author

Correspondence to Yi-Hu Song.

Electronic Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hou, FY., Song, YH. & Zheng, Q. Influence of Liquid Isoprene Rubber on Strain Softening of Carbon Black Filled Isoprene Rubber Nanocomposites. Chin J Polym Sci (2021).

Download citation


  • Rubber nanocomposites
  • Stress softening
  • Mechanical hysteresis
  • Liquid rubber