Feasible Fabrication of Hollow Micro-vesicles by Non-amphiphilic Macromolecules Based on Interfacial Cononsolvency

Abstract

Herein we present a new perspective showing that water-soluble liquids, when added to water, undergo transient emulsification before complete dissolution. Thus, non-amphiphilic macromolecules can self-assemble at the two-miscible-phase interface when cononsolvent effect appears. A representative case shown here is that when poly(N-isopropylacrylamide) (PNIPAm), prepared by aqueous radical polymerization, in methanol solution is added into water, the polymer chains rapidly self-assemble into hollow micro-vesicles based on the cononsolvency at water/methanol interface. This finding provides a subtle strategy to prepare hollow micro-vesicles by non-amphiphilic polymers without template participating. We proposed a new concept “interfacial cononsolvency” to describe the formation process. Due to the easy modification process, sugar-contained PNIPAm chains are synthesized by copolymerization. As an application example, it is shown that these sugar-contained PNIPAm chains can afford “sweet” micro-vesicles (containing glucose residues). And the “sweet” micro-vesicles can well mimick the protocells which are involved in the recognition of bacteria.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Kumar, A.; Li, S.; Cheng, C.; Lee, D. Recent developments in phase inversion emulsification. Ind. Eng. Chem. Res. 2015, 54, 8375–8396.

    CAS  Article  Google Scholar 

  2. 2

    Chandrawati, R.; Caruso, F. Biomimetic liposome- and polymersome-based multicompartmentalized assemblies. Langmuir 2012, 28, 13798–13807.

    CAS  PubMed  Article  Google Scholar 

  3. 3

    Lee, S. M.; Nguyen, S. T. Smart nanoscale drug delivery platforms from stimuli-responsive polymers and liposomes. Macromolecules 2013, 46, 9169–9180.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4

    Torres-Martínez, A.; Angulo-Pachón, C. A.; Galindo, F.; Miravet, J. F. Liposome-enveloped molecular nanogels. Langmuir 2019, 35, 13375–13381.

    PubMed  Article  CAS  Google Scholar 

  5. 5

    Wang, C. Y.; Yuan, Q.; Yang, S. G.; Xu, J. Effect of water content on the size and membrane thickness of polystyrene-block-poly(ethylene oxide) vesicles. Chinese J. Polym. Sci. 2015, 33, 661–668.

    CAS  Article  Google Scholar 

  6. 6

    Wan, L.; Ruiz, R.; Gao, H.; Albrecht, T. R. Self-registered self-assembly of block copolymers. ACS Nano 2017, 11, 7666–7673.

    CAS  PubMed  Article  Google Scholar 

  7. 7

    D’Agosto, F.; Rieger, J.; Lansalot, M. RTFT-medieted polymerization-induced self-assembly. Angew. Chem. Int. Ed. 2020, 59, 8368.

    Article  CAS  Google Scholar 

  8. 8

    Chen, D. Y.; Jiang, M. Strategies for constructing polymeric micelles and hollow spheres in solution via specific intermolecular interactions. Acc. Chem. Res. 2005, 38, 494–502.

    CAS  PubMed  Article  Google Scholar 

  9. 9

    Chen, G. S.; Jiang, M. Cyclodextrin-based inclusion complexation bridging supramolecular chemistry and macromolecular self-assembly. Chem. Soc. Rev. 2011, 40, 2254–2266.

    CAS  PubMed  Article  Google Scholar 

  10. 10

    Xia, D. Y.; Wang, P.; Ji, X. F.; Khashab, N. M.; Sessler, J. L.; Huang, F. H. Functional supramolecular polymeric networks: the marriage of covalent polymers and macrocycle-based host-guest interactions. Chem. Rev. 2020, 120, 6070–6123.

    CAS  PubMed  Article  Google Scholar 

  11. 11

    Luo, M.; Epps, T. H. Directed block copolymer thin film self-assembly: emerging trends in nanopattern fabrication. Macromolecules 2013, 46, 7567–7579.

    CAS  Article  Google Scholar 

  12. 12

    Onses, M. S.; Hernández, A. R.; Hur, S. M.; Sutanto, E.; Williamson, L.; Alleyne, A. G.; Nealey, P. F.; de Pablo, J. J.; Rogers, J. A. Block-copolymer assembly on nanoscale patterns of polymer brushes formed by electrohydrodynamic jet printing. ACS Nano 2014, 8, 6606–6613.

    CAS  PubMed  Article  Google Scholar 

  13. 13

    Tang, Y.; Ito, K.; Hong, L.; Ishizone, T.; Yokoyama, H. Tunable thermoresponsive mesoporous block copolymer membranes. Macromolecules 2016, 49, 7886–7896.

    CAS  Article  Google Scholar 

  14. 14

    Nunes, S. P. Block copolymer membranes for aqueous solution applications. Macromolecules 2016, 49, 2905–2916.

    CAS  Article  Google Scholar 

  15. 15

    Zheng, C. X.; Zhao, Y.; Liu, Y. Recent advances in self-assembled nano-therapeutics. Chinese J. Polym. Sci. 2018, 36, 322.

    CAS  Article  Google Scholar 

  16. 16

    Chen, S.; Qin, J. L.; Du, J. Z. Two principles for polymersomes with ultrahigh biomacromolecular loading efficiencies: acid-induced adsorption and affinity-enhanced attraction. Macromolecules 2020, 53, 3978–3993.

    CAS  Article  Google Scholar 

  17. 17

    Zhou, J. M.; Zhang, W. J.; Hong, C. Y.; Pan, C. Y. Silica nanotubes decorated by pH-responsive diblock copolymers for controlled drug release. ACS Appl. Mater. Interfaces 2015, 7, 3618–3625.

    CAS  PubMed  Article  Google Scholar 

  18. 18

    Qiao, Z. Y.; Ji, R.; Huang, X. N.; Du F. S.; Zhang R.; Liang, D. H.; Li, Z. C. Polymersomes from dual responsive block copolymers: drug encapsulation by heating and acid-triggered release. Biomacromolecules 2013, 14, 1555–1563.

    CAS  PubMed  Article  Google Scholar 

  19. 19

    Hou, Z. L.; Huang, T.; Cai, C. Y.; Resheed T.; Yu, C. Y.; Zhou Y. F.; Yan, D. Y. Polymer vesicle sensor through the self-assembly of hyperbranched polymeric ionic liquids for the detection of SO2 derivatives. Chinese J. Polym. Sci. 2017, 35, 602–610.

    CAS  Article  Google Scholar 

  20. 20

    Sun, H.; Jiang, J. H.; Xiao, Y. F.; Du, J. Z. Efficient removal of polycyclic aromatic hydrocarbons, dyes, and heavy metal ions by a homopolymer vesicle. ACS Appl. Mater. Interfaces 2018, 10, 713–722.

    CAS  PubMed  Article  Google Scholar 

  21. 21

    Trantidou, T.; Friddin, M.; Elani, Y.; Brooks, N. J.; Law, R. V.; Seddon, J. M.; Ces, O. Engineering compartmentalized biomimetic micro- and nanocontainers. ACS Nano 2017, 11, 6549–6565.

    CAS  PubMed  Article  Google Scholar 

  22. 22

    Winnik, F. M.; Ringsdorf, H.; Venzmer, J. Methanol-water as a cononsolvent system for poly(N-isopropylacrylamide). Macromolecules 1990, 23, 2415–2416.

    CAS  Article  Google Scholar 

  23. 23

    Tanaka, F.; Koga, T.; Kojima, H; Winnik, F. M. Hydration and phase separation of temperature-sensitive water-soluble polymers. Chinese J. Polym. Sci. 2011, 29, 13–21.

    CAS  Article  Google Scholar 

  24. 24

    Fukai, T.; Shinyashiki, N.; Yagihara, S.; Kita, R.; Tanaka, F. Phase behavior of co-nonsolvent systems: poly(N-isopropylacrylamide) in mixed solvents of water and methanol. Langmuir 2018, 34, 3003–3009.

    CAS  PubMed  Article  Google Scholar 

  25. 25

    DOIM. Introduction to polymer physics. Oxford, Eng.: Clarendon Press, 1997.

    Google Scholar 

  26. 26

    Zhang, G. Z.; Wu, C. The water/methanol complexation induced reentrant coil-to-globule-to-coil transition of individual homopolymer chains in extremely dilute solution. J. Am. Chem. Soc. 2001, 123, 1376–1380.

    CAS  Article  Google Scholar 

  27. 27

    Tanaka, F.; Koga, T.; Winnik, F. M. Competitive hydrogen bonds and cononsolvency of poly(N-isopropylacrylamide)s in mixed solvents of water/methanol. Prog. Colloid Polym. Sci. 2009, 136, 1–8.

    CAS  Google Scholar 

  28. 28

    Picaa, A.; Graziano, G. An alternative explanation of the cononsolvency of poly(N-isopropylacrylamide) in watermethanol solutions. Phys. Chem. Chem. Phys. 2016, 18, 25601–25608.

    Article  CAS  Google Scholar 

  29. 29

    Picaa, A.; Graziano, G. On the cononsolvency behaviour of hydrophobic clusters in water-methanol solutions. Phys. Chem. Chem. Phys. 2018, 20, 7230–7235.

    Article  Google Scholar 

  30. 30

    Bharadwaj, S.; van der Vegt, N. F. A. Does preferential adsorption drive cononsolvency? Macromolecules 2019, 52, 4131–4138.

    CAS  Article  Google Scholar 

  31. 31

    Yamauchi, H.; Maeda, Y. LCST and UCST behavior of poly(N-isopropylacrylamide) in DMSO/water mixed solvents studied by IR and micro-Raman spectroscopy. J. Phys. Chem. B 2007, 111, 12964–12968.

    CAS  PubMed  Article  Google Scholar 

  32. 32

    Pérez-Ramírez, H. A.; Haro-Pérez, C.; Odriozola, G. Effect of temperature on the cononsolvency of poly(N-isopropylacrylamide) (PNIPAM) in aqueous 1-propanol. ACS Appl. Polym. Mater. 2019, 1, 2961–2972.

    Article  CAS  Google Scholar 

  33. 33

    Ebeling, B.; Eggers, S.; Hendrich, M.; Nitschke, A.; Vana, P. Flipping the pressure- and temperature-dependent cloud-point behavior in the cononsolvency system of poly(N-isopropyl-acrylamide) in water and ethanol. Macromolecules 2014, 47, 1462–1469.

    CAS  Article  Google Scholar 

  34. 34

    Niebuur, B. J.; Ko, C. H.; Zhang, X.; Claude, K. L.; Chiappisi, L.; Schulte, A.; Papadakis, C. M. Pressure dependence of the cononsolvency effect in aqueous poly(N-isopropylacrylamide) solutions: a SANS study. Macromolecules 2020, 53, 3946–3955.

    CAS  Article  Google Scholar 

  35. 35

    Scherzinger, C.; Lindner, P.; Keerl, M.; Richtering, W. Cononsolvency of poly(N,N-diethylacrylamide) (PDEAAM) and poly(N-isopropylacrylamide) (PNIPAM) based microgels in water/methanol mixtures: copolymer vs core-shell microgel. Macromolecules 2010, 43, 6829–6833.

    CAS  Article  Google Scholar 

  36. 36

    Chen, R.; Ren, N.; Jin, X.; Zhu, X. Y. Role transformation of poly(N-isopropylacrylamide) microgels from stabilizer to seed in dispersion polymerization by controlling the water content in methanol-water mixture. Langmuir 2018, 34, 3420–3425.

    CAS  PubMed  Article  Google Scholar 

  37. 37

    Wang, J. H.; Liu, Y. P.; Chen, R.; Zhang, Z. X.; Chen, G. J.; Chen, H. Ultralow self-cross-linked poly(N-isopropylacryl-amide) microgels prepared by solvent exchange. Langmuir 2019, 35, 13991–13998.

    CAS  PubMed  Article  Google Scholar 

  38. 38

    Luo, Y.; Gu, Y.; Feng, R. Y.; Brash, J. L.; Eissa, A. M.; Haddleton, D. M.; Chen, G. J.; Chen, H. Synthesis of glycopolymers with specificity for bacterial strains via bacteria-guided polymerization. Chem. Sci. 2019, 10, 5251–5257.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39

    Zhou, X. J.; Zhou, Y. Y.; Nie, J. J.; Ji, Z. C.; Xu, J. T.; Zhang, X. H.; Du, B. Y. Thermosensitive ionic microgels via surfactant-free emulsion copolymerization and in situ quaternization cross-linking. ACS Appl. Mater. Interfaces 2014, 6, 4498–4513.

    CAS  PubMed  Article  Google Scholar 

  40. 40

    Zhou, X. J.; Lu, H. P.; Kong, L. L.; Zhang D.; Zhang W.; Nie, J. J.; Yuan, J. Y.; Du, B. Y.; Wang, X. P. Thermo-sensitive microgels supported gold nanoparticles as temperature-mediated catalyst. Chinese J. Polym. Sci. 2019, 37, 235–242.

    CAS  Article  Google Scholar 

  41. 41

    Zhou, X.; Lu, H. P.; Chen, F.; Kong, L. L.; Zhang, F.; Zhang, W.; Nie, J. J.; Du, B. Y.; Wang, X. P. Degradable and thermosensitive microgels synthesized via simultaneous quaternization and siloxane condensation. Langmuir 2019, 35, 6145–6153.

    CAS  PubMed  Article  Google Scholar 

  42. 42

    Xue, H.; Zhao, Z. Q.; Chen, R.; Brash, J. L.; Chen, H. Precise regulation of particle size of poly(N-isopropylacrylamide) microgels: measuring chain dimensions with a “molecular ruler”. J. Colloid Interface Sci. 2020, 566, 394–400.

    CAS  PubMed  Article  Google Scholar 

  43. 43

    Zhou, Y. F.; Yan, D. Y. Real-time membrane fusion of giant polymer vesicles. J. Am. Chem. Soc. 2005, 127, 10468–10469.

    CAS  PubMed  Article  Google Scholar 

  44. 44

    Mai Y. Y.; Zhou, Y. F.; Yan, D. Y. Synthesis and size-controllable self-assembly of a novel amphiphilic hyperbranched multiarm copolyether. Macromolecules 2005, 38, 8679–8686.

    CAS  Article  Google Scholar 

  45. 45

    Xue, N.; Qiu, X.; Aseyev, V.; Winnik, F. M. Nonequilibrium liquid-liquid phase separation of poly(N-isopropylacryl-amide) in water/methanol mixtures. Macromolecules 2017, 50, 4446–4453.

    CAS  Article  Google Scholar 

  46. 46

    Wendler, K.; Thar, J.; Zahn, S.; Kirchner, B. Estimating the hydrogen bond energy. J. Phys. Chem. A 2010, 114, 9529–9536.

    CAS  PubMed  Article  Google Scholar 

  47. 47

    Tanaka, F.; Koga, T.; Winnik, F. M. Temperature-responsive polymers in mixed solvents: competitive hydrogen bonds cause cononsolvency. Phys. Rev. Lett. 2008, 101, 028302.

    PubMed  Article  CAS  Google Scholar 

  48. 48

    Tanaka, F.; Koga, T.; Kojima, H.; Xue, N.; Winnik, F. M. Preferential adsorption and co-nonsolvency of thermoresponsive polymers in mixed solvents of water/methanol. Macromolecules 2011, 44, 2978–2989.

    CAS  Article  Google Scholar 

  49. 49

    Mukherji, D.; Marques, C.; Kremer, K. Polymer collapse in miscible good solvents is a generic phenomenon driven by preferential adsorption. Nat. Commun. 2014, 5, 4882.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  50. 50

    Mukherji, D.; Marques, C. M.; Stuehn, T.; Kremer, K. Co-nonsolvency: mean-field polymer theory does not describe polymer collapse transition in a mixture of two competing good solvents. J. Chem. Phys. 2015, 142, 114903.

    PubMed  Article  CAS  Google Scholar 

  51. 51

    Kightlinger, W.; Warfel, K. F.; DeLisa, M. P.; Jewett, M. C. Synthetic glycobiology: parts, systems, and applications. ACS Synth. Biol. 2020, 9, 1534–1562.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52

    You, L. C.; Lu, F. Z.; Li, Z. C.; Zhang, W.; Li, F. M. Glucose-sensitive aggregates formed by poly(ethylene oxide)-block-poly(2-glucosyl-oxyethyl acrylate) with Concanavalin A in dilute aqueous medium. Macromolecules 2003, 36, 1–4.

    CAS  Article  Google Scholar 

  53. 53

    Pasparakis G.; Cockayne A.; Alexander C. Control of bacterial aggregation by thermoresponsive glycopolymers. J. Am. Chem. Soc. 2007, 129, 11014–11015.

    CAS  PubMed  Article  Google Scholar 

  54. 54

    Pasparakis, G.; Alexander, C. Sweet talking double hydrophilic block copolymer vesicles. Angew. Chem. Int. Ed. 2008, 47, 4847–4850.

    CAS  Article  Google Scholar 

  55. 55

    Whitele, M.; Diggle, S. P.; Greenberg, E. P. Progress in and promise of bacterial quorum sensing research. Nature 2018, 555, 126.

    Article  CAS  Google Scholar 

  56. 56

    Ma, Q. M.; Song, Y.; Sun, W. T.; Cao, J.; Yuan, H.; Wang, X. Y.; Sun, Y.; Shum, H. C. Cell-inspired all-aqueous microfluidics: from intracellular liquid-liquid phase separation toward advanced biomaterials. Adv. Sci. 2020, 7, 1903359.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21905192, 21935008 and 21674074), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and China Postdoctoral Science Foundation (No. 2019M661925)

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Rui Chen or Hong Chen.

Electronic Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, JH., Chen, R., Zhao, ZQ. et al. Feasible Fabrication of Hollow Micro-vesicles by Non-amphiphilic Macromolecules Based on Interfacial Cononsolvency. Chin J Polym Sci (2021). https://doi.org/10.1007/s10118-021-2541-z

Download citation

Keywords

  • Non-amphiphilic
  • Interfacial cononsolvency
  • Two-miscible-phase interface
  • Hollow micro-vesicles
  • Protocells