Skip to main content
Log in

Tailoring Morphology of PVDF-HFP Membrane via One-step Reactive Vapor Induced Phase Separation for Efficient Oil-Water Separation

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) receives increasing attention in membrane separation field based on its advantages such as high mechanical strength, thermal and chemical stability. However, controlling the microporous structure is still challenging. In this work, we attempted to tailor the morphology of PVDF-HFP membrane via a one-step reactive vapor induced phase separation method. Namely, PVDF-HFP was dissolved in a volatile solvent and then was cast in an ammonia water vapor atmosphere. After complete evaporation of solvent, membranes with adjustable porous structure were prepared, and the microstructures of the membranes were analyzed by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and X-ray diffraction characterizations. Based on the results, a mechanism of dehydrofluorination induced cross-linking of PVDF-HFP has been suggested to understand the morphology tailoring. To our knowledge, this is the first report of one-step reactive vapor induced phase separation strategy to tailor morphology of PVDF-HFP membrane. In addition, the membranes prepared in the ammonia water vapor exhibited enhanced mechanical strength and achieved satisfactory separation efficiency for water-in-oil emulsions, suggesting promising potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu, J.; Xu, F.; Li, S.; Ma, P.; Zhang, X.; Liu, Q.; Fu, R.; Wu, D. Porous polymers as multifunctional material platforms toward task-specific applications. Adv. Mater. 2019, 31, 1802922.

    Google Scholar 

  2. Cui, Z.; Drioli, E.; Lee, Y. M. Recent progress in fluoropolymers for membranes. Prog. Polym. Sci. 2014, 39, 164–198.

    CAS  Google Scholar 

  3. Tan, X.; Rodrigue, D. A review on porous polymeric membrane preparation. Part I: Production techniques with polysulfone and poly(vinylidene fluoride). Polymers 2019, 11, 1310.

    PubMed Central  Google Scholar 

  4. Améduri, B.; Boutevin, B.; Kostov, G. Fluoroelastomers: synthesis, properties and applications. Prog. Polym. Sci. 2001, 26, 105–187.

    Google Scholar 

  5. Cui, Z.; Hassankiadeh, N. T.; Zhuang, Y.; Drioli, E.; Lee, Y. M. Crystalline polymorphism in poly(vinylidenefluoride) membranes. Prog. Polym. Sci. 2015, 51, 94–126.

    CAS  Google Scholar 

  6. Ma, F.-F.; Zhang, D.; Zhang, N.; Huang, T.; Wang, Y. Polydopamine-assisted deposition of polypyrrole on electrospun poly(vinylidene fluoride) nanofibers for bidirectional removal of cation and anion dyes. Chem. Eng. J. 2018, 354, 432–444.

    CAS  Google Scholar 

  7. Ejaz Ahmed, F.; Lalia, B. S.; Hilal, N.; Hashaikeh, R. Underwater superoleophobic cellulose/electrospun PVDF-HFP membranes for efficient oil/water separation. Desalination 2014, 344, 48–54.

    CAS  Google Scholar 

  8. He, Y.; Chang, Z.; Wu, S.; Qiao, Y.; Bai, S.; Jiang, K.; He, P.; Zhou, H. Simultaneously inhibiting lithium dendrites growth and polysulfides shuttle by a flexible MOF-based membrane in Li-S batteries. Adv. Energy Mater. 2018, 8, 1802130.

    Google Scholar 

  9. Prabakaran, P.; Manimuthu, R. P.; Gurusamy, S.; Sebasthiyan, E. Plasticized polymer electrolyte membranes based on PEO/PVDF-HFP for use as an effective electrolyte in lithium-ion batteries. Chinese J. Polym. Sci. 2017, 35, 407–421.

    CAS  Google Scholar 

  10. Liu, T.; Chang, Z.; Yin, Y.; Chen, K.; Zhang, Y.; Zhang, X. The PVDF-HFP gel polymer electrolyte for Li-O2 battery. Solid State Ion. 2018, 318, 88–94.

    CAS  Google Scholar 

  11. Lu, J.; Liu, Y.; Yao, P.; Ding, Z.; Tang, Q.; Wu, J.; Ye, Z.; Huang, K.; Liu, X. Hybridizing poly(vinylidene fluoride-co-hexafluoropropylene) with Li6.5La3Zr1.5Ta0.5O12 as a lithium-ion electrolyte for solid state lithium metal batteries. Chem. Eng. J. 2019, 367, 230–238.

    CAS  Google Scholar 

  12. Martins, P.; Lopes, A. C.; Lanceros-Mendez, S. Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog. Polym. Sci. 2014, 39, 683–706.

    CAS  Google Scholar 

  13. Ahmed, F. E.; Lalia, B. S.; Hashaikeh, R. A review on electrospinning for membrane fabrication: challenges and applications. Desalination 2015, 356, 15–30.

    CAS  Google Scholar 

  14. Venault, A.; Chang, Y.; Wang, D. M.; Bouyer, D. A review on polymeric membranes and hydrogels prepared by vapor-induced phase separation process. Polym. Rev. 0013, 33, 568–626.

    Google Scholar 

  15. Lalia, B. S.; Kochkodan, V.; Hashaikeh, R.; Hilal, N. A review on membrane fabrication: structure, properties and performance relationship. Desalination 2013, 326, 77–95.

    CAS  Google Scholar 

  16. Shi, L.; Wang, R.; Cao, Y.; Feng, C.; Liang, D. T.; Tay, J. H. Fabrication of poly(vinylidene fluoride-co-hexafluropropylene) (PVDF-HFP) asymmetric microporous hollow fiber membranes. J. Membr. Sci. 2007, 305, 215–225.

    CAS  Google Scholar 

  17. Wongchitphimon, S.; Wang, R.; Jiraratananon, R.; Shi, L.; Loh, C. H. Effect of polyethylene glycol (PEG) as an additive on the fabrication of polyvinylidene fluoride-co-hexafluropropylene (PVDF-HFP) asymmetric microporous hollow fiber membranes. J. Membr. Sci. 2011, 369, 329–338.

    CAS  Google Scholar 

  18. García-Payo, M. C.; Essalhi, M.; Khayet, M. Effects of PVDF-HFP concentration on membrane distillation performance and structural morphology of hollow fiber membranes. J. Membr. Sci. 2010, 347, 209–219.

    Google Scholar 

  19. García-Fernández, L.; García-Payo, M. C.; Khayet, M. Effects of mixed solvents on the structural morphology and membrane distillation performance of PVDF-HFP hollow fiber membranes. J. Membr. Sci. 2014, 468, 324–338.

    Google Scholar 

  20. García-Fernández, L.; García-Payo, M. C.; Khayet, M. Mechanism of formation of hollow fiber membranes for membrane distillation: 1. Inner coagulation power effect on morphological characteristics. J. Membr. Sci. 2017, 542, 456–468.

    Google Scholar 

  21. García-Fernández, L.; García-Payo, M. C.; Khayet, M. Mechanism of formation of hollow fiber membranes for membrane distillation: 2. Outer coagulation power effect on morphological characteristics. J. Membr. Sci. 2017, 542, 469–481.

    Google Scholar 

  22. Asghar, M. R.; Zhang, Y.; Wu, A.; Yan, X.; Shen, S.; Ke, C.; Zhang, J. Preparation of microporous cellulose/poly(vinylidene fluoride-hexafluoropropylene) membrane for lithium ion batteries by phase inversion method. J. Power Sources 2018, 379, 197–205.

    CAS  Google Scholar 

  23. Chang, H. Y.; Venault, A. Adjusting the morphology of poly(vinylidene fluoride-co-hexafluoropropylene) membranes by the VIPS process for efficient oil-rich emulsion separation. J. Membr. Sci. 2019, 581, 178–194.

    CAS  Google Scholar 

  24. Khayet, M.; Cojocaru, C.; García-Payo, M. C. Experimental design and optimization of asymmetric flat-sheet membranes prepared for direct contact membrane distillation. J. Membr. Sci. 2010, 351, 234–245.

    CAS  Google Scholar 

  25. Ahmad, A. L.; Farooqui, U. R.; Hamid, N. A. Synthesis and characterization of porous poly(vinylidene fluoride-co-hexafluoro propylene) (PVDF-co-HFP)/poly(aniline) (PANI)/graphene oxide (GO) ternary hybrid polymer electrolyte membrane. Electrochim. Acta 2018, 283, 842–849.

    CAS  Google Scholar 

  26. Ruan, X.; Zhang, K.; Jiang, X.; Zhang, X.; Yan, X.; Zhang, N.; He, G. Facile fabrication of reinforced homoporous MF membranes by in situ breath figure and thermal adhesion method on substrates. J. Membr. Sci. 2018, 554, 291–299.

    CAS  Google Scholar 

  27. Elamin, K.; Shojaatalhosseini, M.; Danyliv, O.; Martinelli, A.; Swenson, J. Conduction mechanism in polymeric membranes based on PEO or PVDF-HFP and containing a piperidinium ionic liquid. Electrochim. Acta 2019, 299, 979–986.

    CAS  Google Scholar 

  28. Xiong, X.; Xie, F.; Meng, J. Preparation of superhydrophobic porous coating film with the matrix covered with polydimethylsiloxane for oil/water separation. Prog. Org. Coat. 2018, 125, 365–371.

    CAS  Google Scholar 

  29. Meng, J.; Lin, S.; Xiong, X. Preparation of breathable and superhydrophobic coating film via spray coating in combination with vapor-induced phase separation. Prog. Org. Coat. 2017, 107, 29–36.

    CAS  Google Scholar 

  30. Xiong, X.; Zou, W.; Yu, Z.; Duan, J.; Liu, X.; Fan, S.; Zhou, H. Microsphere pattern prepared by a “reverse” breath figure method. Macromolecules 2009, 42, 9351–9356.

    CAS  Google Scholar 

  31. Sun, H.; Yang, X.; Zhang, Y.; Cheng, X.; Xu, Y.; Bai, Y.; Shao, L. Segregation-induced in situ hydrophilic modification of poly (vinylidene fluoride) ultrafiltration membranes via sticky poly(ethylene glycol) blending. J. Membr. Sci. 2018, 563, 22–30.

    CAS  Google Scholar 

  32. Khare, V. P.; Greenberg, A. R.; Krantz, W. B. Vapor-induced phase separation—effect of the humid air exposure step on membrane morphology: Part I. Insights from mathematical modeling. J. Membr. Sci. 2005, 258, 140–156.

    CAS  Google Scholar 

  33. Bouyer, D.; Werapun, W.; Pochat-Bohatier, C.; Deratani, A. Morphological properties of membranes fabricated by VIPS process using PEI/NMP/water system: SEM analysis and mass transfer modelling. J. Membr. Sci. 2010, 349, 97–112.

    CAS  Google Scholar 

  34. Feng, K.; Tang, B.; Wu, P. Ammonia-assisted dehydrofluorination between PVDF and Nafion for highly selective and low-cost proton exchange membranes: a possible way to further strengthen the commercialization of Nafion. J. Mater. Chem. A 2015, 3, 12609–12615.

    CAS  Google Scholar 

  35. Tian, X.; Jiang, X. Poly(vinylidene fluoride-co-hexafluoropropene) (PVDF-HFP) membranes for ethyl acetate removal from water. J. Hazard. Mater. 2008, 153, 128–135.

    CAS  PubMed  Google Scholar 

  36. Zhang, W.; Shi, Z.; Zhang, F.; Liu, X.; Jin, J.; Jiang, L. Superhydrophobic and superoleophilic PVDF membranes for effective separation of water-in-oil emulsions with high flux. Adv. Mater. 2013, 25, 2071–2076.

    CAS  PubMed  Google Scholar 

  37. Huang, A.; Chen, L. H.; Chen, C. H.; Tsai, H. Y.; Tung, K. L. Carbon dioxide capture using an omniphobic membrane for a gas-liquid contacting process. J. Membr. Sci. 2018, 556, 227–237.

    CAS  Google Scholar 

  38. Woo, Y. C.; Chen, Y.; Tijing, L. D.; Phuntsho, S.; He, T.; Choi, J. S.; Kim, S. H.; Kyong Shon, H. CF4 plasma-modified omniphobic electrospun nanofiber membrane for produced water brine treatment by membrane distillation. J. Membr. Sci. 2017, 529, 234–242.

    CAS  Google Scholar 

  39. Pandey, R. P.; Das, A. K.; Shahi, V. K. 2-Acrylamido-2-methyl-1-propanesulfonic acid grafted poly(vinylidene fluoride-co-hexafluoropropylene)-based acid-/oxidative-resistant cation exchange for membrane electrolysis. ACS Appl. Mater. Interfaces 2015, 7, 28524–28533.

    CAS  PubMed  Google Scholar 

  40. Liu, Z.; Wang, H.; Wang, E.; Zhang, X.; Yuan, R.; Zhu, Y. Superhydrophobic poly(vinylidene fluoride) membranes with controllable structure and tunable wettability prepared by one-step electrospinning. Polymer 2016, 82, 105–113.

    CAS  Google Scholar 

  41. Cao, J. H.; Zhu, B. K.; Xu, Y. Y. Structure and ionic conductivity of porous polymer electrolytes based on PVDF-HFP copolymer membranes. J. Membr. Sci. 2006, 281, 446–453.

    CAS  Google Scholar 

  42. Xiang, Y. H.; Liu, F.; Xue, L. X.; Shen, J. H.; Lin, H. B. Morphology evolution of poly(vinylidene fluoride) membranes during supercritical CO2 assisted phase inversion. Chinese J. Polym. Sci. 2014, 32, 1628–1638.

    CAS  Google Scholar 

  43. Awanis Hashim, N.; Liu, Y.; Li, K. Stability of PVDF hollow fibre membranes in sodium hydroxide aqueous solution. Chem. Eng. Sci. 2011, 66, 1565–1575.

    CAS  Google Scholar 

  44. Zhu, Y.; Wang, J.; Zhang, F.; Gao, S.; Wang, A.; Fang, W.; Jin, J. Zwitterionic nanohydrogel grafted PVDF membranes with comprehensive antifouling property and superior cycle stability for oil-in-water emulsion separation. Adv. Funct. Mater. 2018, 28, 1804121.

    Google Scholar 

  45. Hou, Y.; Duan, C. T.; Zhao, N.; Zhang, H.; Zhao, Y. P.; Chen, L.; Dai, H. J.; Xu, J. A versatile coating approach to fabricate superwetting membranes for separation of water-in-oil emulsions. Chinese J. Polym. Sci. 2016, 34, 1234–1239.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Fundamental Research Funds for the Central Universities of China (No. 20720200040) and the National Natural Science Foundation of China (No. 51273166).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Peng Xiong.

Electronic Supplementary Information

10118_2021_2527_MOESM1_ESM.pdf

Tailoring Morphology of PVDF-HFP Membrane via One-step Reactive Vapor Induced Phase Separation for Efficient Oil-Water Separation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huo, P., Zhong, CT. & Xiong, XP. Tailoring Morphology of PVDF-HFP Membrane via One-step Reactive Vapor Induced Phase Separation for Efficient Oil-Water Separation. Chin J Polym Sci 39, 610–619 (2021). https://doi.org/10.1007/s10118-021-2527-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2527-x

Keywords

Navigation