Skip to main content

Advertisement

Log in

Ultrasmall Nanoparticle ROS Scavengers Based on Polyhedral Oligomeric Silsesquioxanes

  • Rapid Communication
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Although tremendous efforts have been devoted to the structural and functional tailoring of natural polyphenol-functionalized nanoparticles, preparing ultrasmall sized (< 6 nm) particles with precisely-defined structures has remained a grand challenge. In this work, we reported the preparation of ultra-small and precisely structured polyhedral oligomeric silsesquioxanes (POSS)-based polyphenol nanoparticles (T8-, T10-, and T12-GAPOSS) by accurately functionalizing the POSS surface with plant polyphenol gallic acid units via thiol-Michael “click” reactions. Those polyphenol nanoparticles exhibited strong free radical scavenging capacity, good biocompatibility and ability to resist cell oxidative damage, which demonstrated great potentials in inhibiting oxidative stress induced pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Cairns, R. A.; Harris, I. S.; Mak, T. W. Regulation of cancer cell metabolism. Nat. Rev. Cancer. 2011, 11, 85.

    Article  CAS  Google Scholar 

  2. Jiao, X.; Li, Y.; Niu, J.; Xie, X.; Wang, X.; Tang, B. Small-molecule fluorescent probes for imaging and detection of reactive oxygen, nitrogen, and sulfur species in biological systems. Anal. Chem. 2017, 90, 533–555.

    Article  Google Scholar 

  3. Zhang, J.; Fu, Y.; Yang, P.; Liu, X.; Li, Y.; Gu, Z. ROS scavenging biopolymers for anti-inflammatory diseases: classification and formulation. Adv. Mater. Interfaces 2020, 64, 2000632.

    Article  Google Scholar 

  4. Wang, C.; Sang, H.; Wang, Y.; Zhu, F.; Hu, X.; Wang, X.; Wang, X.; Li, Y.; Cheng, Y. Foe to friend: supramolecular nanomedicines consisting of natural polyphenols and bortezomib. Nano Lett. 2018, 18, 7045–7051.

    Article  CAS  Google Scholar 

  5. Rahim, M. A.; Kristufek, S. L.; Pan, S.; Richardson, J. J.; Caruso, F. Phenolic building blocks for the assembly of functional materials. Angew. Chem. Int. Ed. 2019, 58, 1904–1927.

    Article  CAS  Google Scholar 

  6. Dai, Q.; Geng, H.; Yu, Q.; Hao, J.; Cui, J. Polyphenol-based particles for theranostics. Theranostics 2019, 9, 3170.

    Article  CAS  Google Scholar 

  7. Shin, M.; Park, E.; Lee, H. Plant-inspired pyrogallol-containing functional materials. Adv. Funct. Mater. 2019, 29, 1903022.

    Article  CAS  Google Scholar 

  8. Li, M.; Wang, H.; Hu, J.; Hu, J.; Zhang, S.; Yang, Z.; Li, Y.; Cheng, Y. Smart hydrogels with antibacterial properties built from all natural building blocks. Chem. Mater. 2019, 31, 7678–7685.

    Article  CAS  Google Scholar 

  9. Yang, P.; Zhang, S.; Chen, X.; Liu, X.; Wang, Z.; Li, Y. Recent developments in polydopamine fluorescent nanomaterials. Mater. Horiz. 2020, 7, 746–761.

    Article  CAS  Google Scholar 

  10. Wang, X.; Yang, L.; Yang, P.; Guo, W.; Zhang, Q.; Liu, X.; Li, Y. Metal ions-promoted fabrication of melanin-like poly(L-DOPA) nanoparticles for photothermal actuation. Sci. China Chem. 2020, 63, 1295–1305.

    Article  CAS  Google Scholar 

  11. Shi, X.; Yang, P.; Peng, X.; Huang, C.; Qian, Q.; Wang, B.; He, J.; Liu, X.; Li, Y.; Kuang, T. Bi-phase fire-resistant polyethylenimine/graphene oxide/melanin coatings using layer by layer assembly technique: smoke suppression and thermal stability of flexible polyurethane foams. Polymer 2019, 170, 65–75.

    Article  CAS  Google Scholar 

  12. Valgimigli, L.; Baschieri, A.; Amorati, R. Antioxidant activity of nanomaterials. J. Mater. Chem. B 2018, 6, 2036–2051.

    Article  CAS  Google Scholar 

  13. Hsieh, D. S.; Wang, H.; Tan, S. W.; Huang, Y. H.; Tsai, C. Y.; Yeh, M. K.; Wu, C. J. The treatment of bladder cancer in a mouse model by epigallocatechin-3-gallate-gold nanoparticles. Biomaterials 2011, 32, 7633–7640.

    Article  CAS  Google Scholar 

  14. Lin, Y. H.; Chen, Z. R.; Lai, C. H.; Hsieh, C. H.; Feng, C. L. Active targeted nanoparticles for oral administration of gastric cancer therapy. Biomacromolecules 2015, 16, 3021–3032.

    Article  CAS  Google Scholar 

  15. Shutava, T. G.; Balkundi, S. S.; Vangala, P.; Steffan, J. J.; Bigelow, R. L.; Cardelli, J. A.; O’Neal, D. P.; Lvov, Y. M. Layer-by-layer coated gelatin nanoparticles as a vehicle for delivery of natural polyphenols. ACS Nano 2009, 3, 1877–1885.

    Article  CAS  Google Scholar 

  16. Debnath, K.; Shekhar, S.; Kumar, V.; Jana, N. R.; Jana, N. R. Efficient inhibition of protein aggregation, disintegration of aggregates, and lowering of cytotoxicity by green tea polyphenol-based self-assembled polymer nanoparticles. ACS Appl. Mater. Interfaces 2016, 8, 20309–20318.

    Article  CAS  Google Scholar 

  17. Xiang, S.; Yang, P.; Guo, H.; Zhang, S.; Zhang, X.; Zhu, F.; Li, Y. Green tea makes polyphenol nanoparticles with radical-scavenging activities. Macromol. Rapid Commun. 2017, 38, 1700446.

    Article  Google Scholar 

  18. Hu, K.; Miao, L.; Goodwin, T. J.; Li, J.; Liu, Q.; Huang, L. Quercetin remodels the tumor microenvironment to improve the permeation, retention, and antitumor effects of nanoparticles. ACS Nano 2017, 11, 4916–4925.

    Article  CAS  Google Scholar 

  19. Ju, K.-Y.; Lee, Y.; Lee, S.; Park, S. B.; Lee, J. K. Bioinspired polymerization of dopamine to generate melanin-like nanoparticles having an excellent free-radical-scavenging property. Biomacromolecules 2011, 12, 625–632.

    Article  CAS  Google Scholar 

  20. Wang, X.; Chen, Z.; Yang, P.; Hu, J.; Wang, Z.; Li, Y. Size control synthesis of melanin-like polydopamine nanoparticles by tuning radicals. Polym. Chem. 2019, 10, 4194–4200.

    Article  CAS  Google Scholar 

  21. Cordes, D. B.; Lickiss, P. D.; Rataboul, F. Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes. Chem. Rev. 2010, 110, 2081–2173.

    Article  CAS  Google Scholar 

  22. Li, Z.; Kong, J.; Wang, F.; He, C. Polyhedral oligomeric silsesquioxanes (POSSs): an important building block for organic optoelectronic materials. J. Mater. Chem. C 2017, 5, 5283–5298.

    Article  CAS  Google Scholar 

  23. Hou, H.; Li, J.; Li, X.; Forth, J.; Yin, J.; Jiang, X.; Helms, B. A.; Russell, T. P. Interfacial activity of amine-functionalized polyhedral oligomeric silsesquioxanes (POSS): a simple strategy to structure liquids. Angew. Chem. Int. Ed. 2019, 131, 10248–10253.

    Article  Google Scholar 

  24. Li, Z.; Hu, J.; Yang, L.; Zhang, X.; Liu, X.; Wang, Z.; Li, Y. Integrated POSS-dendrimer nanohybrid materials: current status and future perspective. Nanoscale 2020, 12, 11395–11415.

    Article  CAS  Google Scholar 

  25. Su, Z.; Zhang, R.; Yan, X.; Guo, Q.; Huang, J.; Shan, W.; Liu, Y.; Liu, T.; Huang, M.; Cheng, S. Z. The role of architectural engineering in macromolecular self-assemblies via non-covalent interactions: a molecular LEGO approach. Prog. Polym. Sci. 2020, 103, 101230.

    Article  CAS  Google Scholar 

  26. Li, Z.; Fu, Y.; Li, Z.; Nan, N.; Zhu, Y.; Li, Y. Froth flotation giant surfactants. Polymer 2019, 162, 58–62.

    Article  CAS  Google Scholar 

  27. Zhou, K.; Bisoyi, H. K.; Jin, J. Q.; Yuan, C. L.; Liu, Z.; Shen, D.; Lu, Y. Q.; Zheng, Z. G.; Zhang, W.; Li, Q. Light-driven reversible transformation between self-organized simple cubic lattice and helical superstructure enabled by a molecular switch functionalized nanocage. Adv. Mater. 2018, 30, 1800237.

    Article  Google Scholar 

  28. Kuo, S. W.; Chang, F. C. POSS related polymer nanocomposites. Prog. Polym. Sci. 2011, 36, 1649–1696.

    Article  CAS  Google Scholar 

  29. Jeon, J. H.; Tanaka, K.; Chujo, Y. Synthesis of sulfonic acid-containing POSS and its filler effects for enhancing thermal stabilities and lowering melting temperatures of ionic liquids. J. Mater. Chem. A 2014, 2, 624–630.

    Article  CAS  Google Scholar 

  30. Li, Y.; Dong, X. H.; Zou, Y.; Wang, Z.; Yue, K.; Huang, M.; Liu, H.; Feng, X.; Lin, Z.; Zhang, W.; Cheng, S. Z. Polyhedral oligomeric silsesquioxane meets “click” chemistry: rational design and facile preparation of functional hybrid materials. Polymer 2017, 125, 303–329.

    Article  CAS  Google Scholar 

  31. Zhang, W.; Müller, A. H. Architecture, self-assembly and properties of well-defined hybrid polymers based on polyhedral oligomeric silsequioxane (POSS). Prog. Polym. Sci. 2013, 38, 1121–1162.

    Article  CAS  Google Scholar 

  32. Lu, N.; Lu, Y.; Liu, S.; Jin, C.; Fang, S.; Zhou, X.; Li, Z. Tailor-engineered POSS-based hybrid gels for bone regeneration. Biomacromolecules 2019, 20, 3485–3493.

    Article  CAS  Google Scholar 

  33. Su, Z.; Hsu, C. H.; Gong, Z.; Feng, X.; Huang, J.; Zhang, R.; Wang, Y.; Mao, J.; Wesdemiotis, C.; Li, T.; Cheng, S. Z. Identification of a Frank-Kasper Z phase from shape amphiphile self-assembly. Nat. Chem. 2019, 11, 899–905.

    Article  CAS  Google Scholar 

  34. Zou, Y.; Zhang, L.; Yang, L.; Zhu, F.; Ding, M.; Lin, F.; Wang, Z.; Li, Y. “Click” chemistry in polymeric scaffolds: bioactive materials for tissue engineering. J. Control. Release 2018, 273, 160–179.

    Article  CAS  Google Scholar 

  35. Shavandi, A.; Bekhit, A. E. D. A.; Saeedi, P.; Izadifar, Z.; Bekhit, A. A.; Khademhosseini, A. Polyphenol uses in biomaterials engineering. Biomaterials 2018, 167, 91–106.

    Article  CAS  Google Scholar 

  36. Yang, P.; Gu, Z.; Zhu, F.; Li, Y. Structural and functional tailoring of melanin-like polydopamine radical scavengers. CCS Chem. 2020, 2, 128–138.

    Article  CAS  Google Scholar 

  37. Li, Z.; Wang, T.; Zhu, F.; Wang, Z.; Li, Y. Bioinspired fluorescent dihydroxyindoles oligomers. Chin. Chem. Lett. 2020, 31, 783–786.

    Article  CAS  Google Scholar 

  38. Cheng, X.; Li, M.; Wang, H.; Cheng, Y. All-small-molecule dynamic covalent gels with antibacterial activity by boronate-tannic acid gelation. Chin. Chem. Lett. 2020, 31, 869–874.

    Article  CAS  Google Scholar 

  39. Li, Z.; Zhang, J.; Fu, Y.; Yang, L.; Zhu, F.; Liu, X.; Gu, Z.; Li, Y. Antioxidant shape amphiphiles for accelerated wound healing. J. Mater. Chem. B 2020, 3, 7018–7023.

    Article  Google Scholar 

  40. Shan, M.; Gong, C.; Li, B.; Wu, G. A pH, glucose, and dopamine triple-responsive, self-healable adhesive hydrogel formed by phenylborate-catechol complexation. Polym. Chem. 2017, 8, 2997–3005.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51603133 and 21774079), National Key R&D Program of China (No. 2019YFA0904500), the Program of the Science, Technology Department of Guangzhou, China (No. 201803020039), and the Fundamental Research Funds for Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhipeng Gu or Yiwen Li.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Li, H., Zhang, J. et al. Ultrasmall Nanoparticle ROS Scavengers Based on Polyhedral Oligomeric Silsesquioxanes. Chin J Polym Sci 38, 1149–1156 (2020). https://doi.org/10.1007/s10118-020-2486-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2486-7

Keywords

Navigation