Skip to main content

Advertisement

Log in

Conductive Film with Flexible and Stretchable Capability for Sensor Application and Stealth Information Transmission

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Flexible and wearable strain sensors for human-computer interaction, health monitoring, and soft robotics have drawn widespread attention to promising applications in the next generation of artificial intelligence devices. However, conventional semiconductor sensors are difficult to meet the requirements of flexibility and stretchability. Here, we reported a kind of novel and simple sensor based on layer-by-layer (LBL) method. Carbon nanotubes (CNTs) layer provides high ductility and stability in the process of tension sensing, while silver layer provides low initial resistance and fast reflecting in the process of tension sensing. LBL method ensures the uniformity of the conductive layer. The sensor has superior sheet resistance of 9.44 Ω/sq., high elongation at break of 104%. For sensing capability, the sensor has wide reflecting range of 60%, high gauge factor (GF) of 1000 up to 60% strain, fast reflecting time of 165 ms. Excellent reliability and stability have also been verified. It is also worth mentioning that the entire process does not require any expensive equipments, complicated processes or harsh experimental conditions. The above features provide an idea for large-scale application of flexible stretchable sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, Z. F.; Yang, K.; Zhao, S. G.; Guo, L. N. Self-healing behavior of ethylene propylene diene rubbers based on ionic association. Chinese J. Polym. Sci. 2019, 37, 700–707.

    Article  CAS  Google Scholar 

  2. Ryu, S.; Lee, P.; Chou, J. B.; Xu, R.; Zhao, R.; Hart, A. J.; Kim, S. G. Extremely elastic wearable carbon nanotube fiber strain sensor for monitoring of human motion. ACS Nano 2015, 9, 5929.

    Article  CAS  Google Scholar 

  3. Chen, X.; Sun, P.; Liu, H. Hierarchically crosslinked gels containing hydrophobic ionic liquids towards reliable sensing applications. Chinese J. Polym. Sci. 2020, 38, 332–341.

    Article  CAS  Google Scholar 

  4. Lin, S.; Zhao, X.; Jiang, X.; Wu, A.; Ding, H.; Zhong, Y.; Li, J.; Pan, J.; Liu, B.; Zhu, H. Highly stretchable, adaptable, and durable strain sensing based on a bioinspired dynamically cross-linked graphene/polymer composite. Small 2019, 15, e1900848.

    Article  Google Scholar 

  5. Ma, Y.; Zhang, Y.; Cai, S.; Han, Z.; Liu, X.; Wang, F.; Cao, Y.; Wang, Z.; Li, H.; Chen, Y.; Feng, X. Flexible hybrid electronics for digital healthcare. Adv. Mater. 2019, e1902062.

    Google Scholar 

  6. Han, Y.; Wu, X.; Zhang, X.; Lu, C. Archimedean spiral inspired conductive supramolecular elastomer with rapid electrical and mechanical self-healing capability for sensor application. Adv. Mater. Technol. 2019, 4, 1800424.

    Article  Google Scholar 

  7. Yu, G. H.; Han, Q.; Qu, L. T. Graphene fibers: advancing applications in sensor, energy storage and conversion. Chinese J. Polym. Sci. 2019, 37, 535–547.

    Article  CAS  Google Scholar 

  8. Ma, W. L.; Cai, Z. H.; Zhang, Y.; Wang, Z. Y.; Xia, L.; Ma, S. P.; Li, G. H.; Huang, Y. An overview of stretchable supercapacitors based on carbon nanotube and graphene. Chinese J. Polym. Sci. 2020, 38, 491–505.

    Article  CAS  Google Scholar 

  9. Yang, X.; Liu, J.; Fan, D.; Cao, J.; Huang, X.; Zheng, Z.; Zhang, X. Scalable manufacturing of real-time self-healing strain sensors based on brominated natural rubber. Chem. Eng. J. 2020, 389, 124448.

    Article  Google Scholar 

  10. Jian, M.; Zhang, Y.; Liu, Z. Natural biopolymers for flexible sensing and energy devices. Chinese J. Polym. Sci. 2020, 38, 459–490.

    Article  CAS  Google Scholar 

  11. Wang, C.; Xia, K.; Wang, H.; Liang, X.; Yin, Z.; Zhang, Y. Advanced carbon for flexible and wearable electronics. Adv. Mater. 2019, 31, e1801072.

    Article  Google Scholar 

  12. Liao, X.; Song, W.; Zhang, X.; Yan, C.; Li, T.; Ren, H.; Liu, C.; Wang, Y.; Zheng, Y. A bioinspired analogous nerve towards artificial intelligence. Nat. Commun. 2020, 11, 268.

    Article  CAS  Google Scholar 

  13. Zhang, M.; Wang, C.; Wang, Q.; Jian, M.; Zhang, Y. Sheath-core graphite/silk fiber made by dry-meyer-rod-coating for wearable strain sensors. ACS Appl. Mater. Interfaces 2016, 8, 20894.

    Article  CAS  Google Scholar 

  14. Li, Z.; Shan, Y.; Wang, X.; Li, H.; Yang, K.; Cui, Y. Self-healing flexible sensor based on metal-ligand coordination. Chem. Eng. J. 2020, 394, 124932.

    Article  CAS  Google Scholar 

  15. Wan, Y.; Qiu, Z.; Huang, J.; Yang, J.; Wang, Q.; Lu, P.; Yang, J.; Zhang, J.; Huang, S.; Wu, Z.; Guo, C. F. Natural plant materials as dielectric layer for highly sensitive flexible electronic skin. Small 2018, 14, e1801657.

    Article  Google Scholar 

  16. Liu, Q.; Liu, Z.; Li, C.; Xie, K.; Zhu, P.; Shao, B.; Zhang, J.; Yang, J.; Zhang, J.; Wang, Q.; Guo, C. F. Highly transparent and flexible iontronic pressure sensors based on an opaque to transparent transition. Adv. Sci. 2020, 2000348.

  17. Mo, Y. L.; Tian, Y. X.; Liu, Y. H.; Chen, F.; Fu, Q. Preparation and properties of ultrathin flexible expanded graphite film via adding natural rubber. Chinese J. Polym. Sci. 2019, 37, 806–814.

    Article  CAS  Google Scholar 

  18. Xu, J.; Wu, H. C.; Zhu, C.; Ehrlich, A.; Shaw, L.; Nikolka, M.; Wang, S.; Molina-Lopez, F.; Gu, X.; Luo, S.; Zhou, D.; Kim, Y. H.; Wang, G. N.; Gu, K.; Feig, V. R.; Chen, S.; Kim, Y.; Katsumata, T.; Zheng, Y. Q.; Yan, H.; Chung, J. W.; Lopez, J.; Murmann, B.; Bao, Z. Multi-scale ordering in highly stretchable polymer semiconducting films. Nat. Mater. 2019, 18, 594.

    Article  CAS  Google Scholar 

  19. Lei, T.; Shao, L. L.; Zheng, Y. Q.; Pitner, G.; Fang, G.; Zhu, C.; Li, S.; Beausoleil, R.; Wong, H. P.; Huang, T. C.; Cheng, K. T.; Bao, Z. Low-voltage high-performance flexible digital and analog circuits based on ultrahigh-purity semiconducting carbon nanotubes. Nat. Commun. 2019, 10, 2161.

    Article  Google Scholar 

  20. Liu, X.; Su, G.; Guo, Q.; Lu, C.; Zhou, T.; Zhou, C.; Zhang, X. Hierarchically structured self-healing sensors with tunable positive/negative piezoresistivity. Adv. Funct. Mater. 2018, 28, 1706658.

    Article  Google Scholar 

  21. Liang, Y.; Xiao, P.; Wang, S.; Shi, J.; He, J.; Zhang, J.; Huang, Y.; Chen, T. Scalable fabrication of free-standing, stretchable CNT/TPE ultrathin composite films for skin adhesive epidermal electronics. J. Mater. Chem. C 2018, 6, 6666.

    Article  CAS  Google Scholar 

  22. Zhu, G. J.; Ren, P. G.; Guo, H.; Jin, Y. L.; Yan, D. X.; Li, Z. M. Highly sensitive and stretchable polyurethane fiber strain sensors with embedded silver nanowires. ACS Appl. Mater. Interfaces 2019, 11, 23649.

    Article  CAS  Google Scholar 

  23. Jheng, L. C.; Hsiao, C. H.; Ko, W. C.; Hsu, S. L.; Huang, Y. L. Conductive films based on sandwich structures of carbon nanotubes/silver nanowires for stretchable interconnects. Nanotechnology 2019, 30, 235201.

    Article  CAS  Google Scholar 

  24. Guo, C. F.; Chen, Y.; Tang, L.; Wang, F.; Ren, Z. Enhancing the scratch resistance by introducing chemical bonding in highly stretchable and transparent electrodes. Nano Lett. 2016, 16, 594.

    Article  CAS  Google Scholar 

  25. Guo, C. F.; Sun, T.; Liu, Q.; Suo, Z.; Ren, Z. Highly stretchable and transparent nanomesh electrodes made by grain boundary lithography. Nat. Commun. 2014, 5, 3121.

    Article  Google Scholar 

  26. Liu, B.; Tang, H.; Luo, Z.; Zhang, W.; Tu, Q.; Jin, X. Wearable carbon nanotubes-based polymer electrodes for ambulatory electrocardiographic measurements. Sens. Actuators A 2017, 265, 79.

    Article  CAS  Google Scholar 

  27. Qin, R.; Liu, Y.; Tao, F.; Li, C.; Cao, W.; Yang, P. Protein-bound freestanding 2D metal film for stealth information transmission. Adv. Mater. 2019, 31, e1803377.

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51403115). The authors would like to thank Mr. Ang Li and Prof. Huige Wei for the guidance of electrical signal tests of this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kun Yang or Yong-Yan Cui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shan, YF., Yang, K., Li, ZX. et al. Conductive Film with Flexible and Stretchable Capability for Sensor Application and Stealth Information Transmission. Chin J Polym Sci 39, 164–173 (2021). https://doi.org/10.1007/s10118-020-2483-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2483-x

Keywords

Navigation