Skip to main content

Facile Synthesis of High Molecular Weight Polypeptides via Fast and Moisture Insensitive Polymerization of α-Amino Acid N-Carboxyanhydrides


Polypeptides have been widely utilized in the fields of biomaterials and biomedicine. Ever since N-carboxyanhydride (NCA) was reported by Hermann Leuchs in 1906, ring-opening polymerization of NCAs has been extensively used to prepare polypeptides. Despite continuous innovations, it is still challenging to synthesize polypeptides in high molecular weight efficiently. To address this challenge, we developed KHMDS/NaHMDS initiated fast NCA polymerization that is also moisture tolerant, open-flask amenable and terminal tunable. This NCA polymerization was able to proceed in most common solvents and meet the solubility requirement of variable NCA monomers and corresponding polypeptides. KHMDS can initiate γ-benzyl-L-glutamate-N-carboxyanhydride (BLG NCA) polymerization in a reaction rate 92 times faster than does hexylamine and 80 times faster than does triethylamine. This NCA polymerization also demonstrated easy and fast synthesis of gram-scale long chain polypeptides in an open flask.

This is a preview of subscription content, access via your institution.


  1. 1

    Liu, R.; Chen, X.; Gellman, S. H.; Masters, K. S. Nylon-3 polymers that enable selective culture of endothelial cells. J. Am. Chem. Soc. 2013, 135, 16296–16299.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2

    Zhang, K.; Yan, S.; Li, G.; Cui, L.; Yin, J. In-situ birth of MSCs multicellular spheroids in poly(L-glutamic acid)/chitosan scaffold for hyaline-like cartilage regeneration. Biomaterials 2015, 71, 24–34.

    CAS  PubMed  Google Scholar 

  3. 3

    Liu, T.; Zhang, Y. F.; Liu, S. Y. Drug and plasmid DNA co-delivery nanocarriers based on abctype polypeptide hybrid miktoarm star copolymers. Chinese J. Polym. Sci. 2013, 31, 924–937.

    CAS  Google Scholar 

  4. 4

    Liu, H.; Xiao, Y.; Xu, H.; Guan, Y.; Zhang, J.; Lang, M. Reversible thermo-sensitivity induced from varying the hydrogen bonding between the side residues of rationally designed polypeptides. Chem. Commun. 2015, 51, 10174–10177.

    CAS  Google Scholar 

  5. 5

    Guo, A.; Yang, W.; Yang, F.; Yu, R.; Wu, Y. Well-defined poly(γ-benzyl-L-glutamate)-g-polytetrahydrofuran: synthesis, characterization, and properties. Macromolecules 2014, 47, 5450–5461.

    CAS  Google Scholar 

  6. 6

    Herce, H. D.; Schumacher, D.; Schneider, A. F. L.; Ludwig, A. K.; Mann, F. A.; Fillies, M.; Kasper, M. A.; Reinke, S.; Krause, E.; Leonhardt, H.; Cardoso, M. C.; Hackenberger, C. P. R. Cell-permeable nanobodies for targeted immunolabelling and antigen manipulation in living cells. Nat. Chem. 2017, 9, 762–771.

    CAS  PubMed  Google Scholar 

  7. 7

    Lee, M. W.; Han, M.; Bossa, G. V.; Snell, C.; Song, Z.; Tang, H.; Yin, L.; Cheng, J.; May, S.; Luijten, E.; Wong, G. C. Interactions between membranes and “metaphilic” polypeptide architectures with diverse side-chain populations. ACS Nano 2017, 11, 2858–2871.

    CAS  PubMed  Google Scholar 

  8. 8

    Hou, Y.; Zhou, Y.; Wang, H.; Wang, R.; Yuan, J.; Hu, Y.; Sheng, K.; Feng, J.; Yang, S.; Lu, H. Macrocyclization of interferonpoly(alpha-amino acid) conjugates significantly improves the tumor retention, penetration, and antitumor efficacy. J. Am. Chem. Soc. 2018, 140, 1170–1178.

    CAS  PubMed  Google Scholar 

  9. 9

    Wu, X.; Wu, Y.; Ye, H.; Yu, S.; He, C.; Chen, X. Interleukin-15 and cisplatin co-encapsulated thermosensitive polypeptide hydrogels for combined immuno-chemotherapy. J. Control. Release 2017, 255, 81–93.

    CAS  PubMed  Google Scholar 

  10. 10

    He, H.; Zheng, N.; Song, Z. Y.; Kim, K. H.; Yao, C.; Zhang, R. J.; Zhang, C. L.; Huang, Y. H.; Uckun, F. M.; Cheng, J. J.; Zhang, Y. F.; Yin, L. C. Suppression of hepatic inflammation via systemic siRNA delivery by membrane-disruptive and endosomolytic helical polypeptide hybrid nanoparticles. ACS Nano 2016, 10, 1859–1870.

    CAS  PubMed  Google Scholar 

  11. 11

    Mowery, B. P.; Lee, S. E.; Kissounko, D. A.; Epand, R. F.; Epand, R. M.; Weisblum, B.; Stahl, S. S.; Gellman, S. H. Mimicry of antimicrobial host-defense peptides by random copolymers. J. Am. Chem. Soc. 2007, 129, 15474–15476.

    CAS  PubMed  Google Scholar 

  12. 12

    Zhou, C.; Qi, X.; Li, P.; Chen, W. N.; Mouad, L.; Chang, M. W.; Leong, S. S.; Chan-Park, M. B. High potency and broad-spectrum antimicrobial peptides synthesized via ring-opening polymerization of α-aminoacid-N-cyrnhxyanhydrides. Biomacromolecules 2010, 11, 60–67.

    CAS  PubMed  Google Scholar 

  13. 13

    Tang, H.; Zhang, D. General route toward side-chain-functionalized α-helical polypeptides. Biomacromolecules 2010, 11, 1585–1592.

    CAS  PubMed  Google Scholar 

  14. 14

    Li, P.; Zhou, C.; Rayatpisheh, S.; Ye, K.; Poon, Y. F.; Hammond, P. T.; Duan, H.; Chan-Park, M. B. Cationic peptidopolysaccharides show excellent broad-spectrum antimicrobial activities and high selectivity. Adv. Mater. 2012, 24, 4130–4137.

    CAS  PubMed  Google Scholar 

  15. 15

    Ong, Z. Y.; Wiradharma, N.; Yang, Y. Y. Strategies employed in the design and optimization of synthetic antimicrobial peptide amphiphiles with enhanced therapeutic potentials. Adv. Drug Deliv. Rev. 2014, 78, 28–45.

    CAS  PubMed  Google Scholar 

  16. 16

    Wang, M.; Zhou, C.; Chen, J.; Xiao, Y.; Du, J. Multifunctional biocompatible and biodegradable folic acid conjugated poly(ε-caprolactone)-polypeptide copolymer vesicles with excellent antibacterial activities. Bioconjug. Chem. 2015, 26, 725–734.

    CAS  PubMed  Google Scholar 

  17. 17

    Xiong, M.; Han, Z.; Song, Z.; Yu, J.; Ying, H.; Yin, L.; Cheng, J. Bacteria-assisted activation of antimicrobial polypeptides by a random-coil to helix transition. Angew. Chem. Int. Ed. 2017, 56, 10826–10829.

    CAS  Google Scholar 

  18. 18

    Teng, P.; Ma, N.; Cerrato, D. C.; She, F.; Odom, T.; Wang, X.; Ming, L. J.; van der Vaart, A.; Wojtas, L.; Xu, H.; Cai, J. Right-handed helical foldamers consisting of de novo D-AApeptides. J. Am. Chem. Soc. 2017, 139, 7363–7369.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Gao, Y. F.; Dong, C. M. Triple redox/temperature responsive diselenide-containing homopolypeptide micelles and supramolecular hydrogels thereof. J. Polym. Sci., Part A: Polym. Chem. 2018, 56, 1067–1077.

    CAS  Google Scholar 

  20. 20

    Zhang, S.; Xiao, X. M.; Qi, F.; Ma, P. C.; Zhang, W. W.; Dai, C. Z.; Zhang, D. F.; Liu, R. H. Biofilm disruption utilizing alpha/beta chimeric polypeptide molecular brushes. Chinese J. Polym. Sci. 2019, 37, 1105–1112.

    Google Scholar 

  21. 21

    Huang, J. G.; Li, J. C.; Lyu, Y.; Miao, Q. Q.; Pu, K. Molecular optical imaging probes for early diagnosis of drug-induced acute kidney injury. Nat. Mater. 2019, 18, 1133–1143.

    CAS  PubMed  Google Scholar 

  22. 22

    Xu, D. Z.; Liu, M. Y.; Huang, Q.; Chen, J. Y.; Huang, H. Y.; Deng, F. J.; Tian, J. W.; Wen, Y. Q.; Zhang, X. Y.; Wei, Y. A novel method for the preparation of fluorescent C60 poly(amino acid) composites and their biological imaging. J. Colloid Interf. Sci. 2018, 516, 392–397.

    CAS  Google Scholar 

  23. 23

    Wu, L.; Zou, Y.; Deng, C.; Cheng, R.; Meng, F.; Zhong, Z. Intracellular release of doxorubicin from core-crosslinked polypeptide micelles triggered by both pH and reduction conditions. Biomaterials 2013, 34, 5262–5272.

    CAS  PubMed  Google Scholar 

  24. 24

    Checco, J. W.; Kreitler, D. F.; Thomas, N. C.; Belair, D. G.; Rettko, N. J.; Murphy, W. L.; Forest, K. T.; Gellman, S. H. Targeting diverse protein-protein interaction interfaces with α/β-peptides derived from the Z-domain scaffold. Proc. Natl. Acad. Sci. 2015, 112, 4552–4557.

    CAS  PubMed  Google Scholar 

  25. 25

    Han, S.; Li, Z.; Zhu, J.; Han, K.; Zeng, Z.; Hong, W.; Li, W.; Jia, H.; Liu, Y.; Zhuo, R.; Zhang, X. Dual-pH sensitive charge-reversal polypeptide micelles for tumor-triggered targeting uptake and nuclear drug delivery. Small 2015, 11, 2543–2554.

    CAS  PubMed  Google Scholar 

  26. 26

    Kirberger, S. E.; Maltseva, S. D.; Manulik, J. C.; Einstein, S. A.; Weegman, B. P.; Garwood, M.; Pomerantz, W. C. K. Synthesis of intrinsically disordered fluorinated peptides for modular design of high-signal (19) F MRI Agents. Angew. Chem. Int. Ed. 2017, 56, 6440–6444.

    CAS  Google Scholar 

  27. 27

    Zhou, X.; Li, Z. Advances and biomedical applications of polypeptide hydrogels derived from α-amino acid N-carboxyanhydride (NCA) polymerizations. Adv. Healthc. Mater. 2018, 7, 1800020.

    Google Scholar 

  28. 28

    Li, B.; Wu, Y. M.; Zhang, W. J.; Zhang, S.; Shao, N.; Zhang, W. W.; Zhang, L. X.; Fei, J.; Dai, Y. D.; Liu, R. H. Efficient synthesis of amino acid polymers for protein stabilization. Biomater. Sci. 2019, 7, 3675–3682.

    CAS  PubMed  Google Scholar 

  29. 29

    Grazon, C.; Salas-Ambrosio, P.; Ibarboure, E.; Buol, A.; Garanger, E.; Grinstaff, M. W.; Lecommandoux, S.; Bonduelle, C. Aqueous ring-opening polymerization-induced self-assembly (ROPISA) of N-carboxyanhydrides. Angew. Chem. Int. Ed. 2020, 59, 622–626.

    CAS  Google Scholar 

  30. 30

    Duan, Y.; Zheng, H.; Li, Z.; Yao, Y.; Ding, J.; Wang, X.; Nakkala, J. R.; Zhang, D.; Wang, Z.; Zuo, X.; Zheng, X.; Ling, J.; Gao, C. Unsaturated polyurethane films grafted with enantiomeric polylysine promotes macrophage polarization to a M2 phenotype through PI3K/Akt1/mTOR axis. Biomaterials 2020, 246, 120012.

    CAS  PubMed  Google Scholar 

  31. 31

    Leuchs, H. Über die Glycin-carbonsaure. Ber. Dtsch. Chem. Ges. 1906, 39, 857–861.

    CAS  Google Scholar 

  32. 32

    Lai, H. W.; Chen, X. Y.; Lu, Q.; Bian, Z.; Tao, Y. H.; Wang, X. H. A new strategy to synthesize bottlebrushes with a helical polyglutamate backbone via N-carboxyanhydride polymerization and RAFT. Chem. Commun. 2014, 50, 14183–14186.

    CAS  Google Scholar 

  33. 33

    Wibowo, S. H.; Sulistio, A.; Wong, E. H.; Blencowe, A.; Qiao, G. G. Polypeptide films via N-carboxyanhydride ring-opening polymerization (NCA-ROP): past, present and future. Chem. Commun. 2014, 50, 4971–4988.

    CAS  Google Scholar 

  34. 34

    Shen, Y.; Li, Z. B.; Klok, H. A. Polypeptide brushes grown via surface-initiated ring-opening polymerization of α-amino acid N-carboxyanhydrides. Chinese J. Polym. Sci. 2015, 33, 931–946.

    CAS  Google Scholar 

  35. 35

    Song, Z.; Fu, H.; Wang, J.; Hui, J.; Xue, T.; Pacheco, L. A.; Yan, H.; Baumgartner, R.; Wang, Z.; Xia, Y.; Wang, X.; Yin, L.; Chen, C.; Rodriguez-Lopez, J.; Ferguson, A. L.; Lin, Y.; Cheng, J. Synthesis of polypeptides via bioinspired polymerization of in situ purified N-carboxyanhydrides. Proc. Natl. Acad. Sci. 2019, 116, 10658–10663.

    CAS  PubMed  Google Scholar 

  36. 36

    Lv, S.; Kim, H.; Feng, L.; Song, Z.; Yang, Y.; Baumgartner, R.; Tseng, K. Y.; Dillon, S. J.; Leal, C.; Yin, L.; Cheng, J. Unimolecular polypeptide micelles via ultra-fast polymerization of N-carboxyanhydrides. J. Am. Chem. Soc. 2020, DOI:

  37. 37

    Deming, T. J. Facile synthesis of block copolypeptides of defined architecture. Nature 1997, 390, 386–389.

    CAS  PubMed  Google Scholar 

  38. 38

    Deming, T. J. Transition metal-amine initiators for preparation of well-defined poly(gamma-benzyl L-glutamate). J. Am. Chem. Soc. 1997, 119, 2759–2760.

    CAS  Google Scholar 

  39. 39

    Zhao, W.; Lv, Y.; Li, J.; Feng, Z.; Ni, Y.; Hadjichristidis, N. Fast and selective organocatalytic ring-opening polymerization by fluorinated alcohol without a cocatalyst. Nat. Commun. 2019, 10, 3590.

    PubMed  PubMed Central  Google Scholar 

  40. 40

    Peng, H.; Ling, J.; Shen, Z. Q. Ring opening polymerization of α-amino acid N-carboxyanhydrides catalyzed by rare earth catalysts: polymerization characteristics and mechanism. J. Polym. Sci., Part A: Polym. Chem. 2012, 50, 1076–1085.

    CAS  Google Scholar 

  41. 41

    Peng, H.; Chen, W. L.; Kong, J.; Shen, Z. Q.; Ling, J. Synthesis of alpha-hydroxy-omega-aminotelechelic polypeptide from alpha-amino acid N-carboxyanhydrides catalyzed by alkali-metal borohydrides. Chinese J. Polym. Sci. 2014, 32, 743–750.

    CAS  Google Scholar 

  42. 42

    Lu, H.; Cheng, J. Hexamethyldisilazane-mediated controlled polymerization of alpha-amino acid N-carboxyanhydrides. J. Am. Chem. Soc. 2007, 129, 14114–14115.

    CAS  PubMed  Google Scholar 

  43. 43

    Lu, H.; Cheng, J. N-trimethylsilyl amines for controlled ring-opening polymerization of amino acid N-carboxyanhydrides and facile end group functionalization of polypeptides. J. Am. Chem. Soc. 2008, 130, 12562–12563.

    CAS  PubMed  Google Scholar 

  44. 44

    Yuan, J.; Sun, Y.; Wang, J.; Lu, H. Phenyl trimethylsilyl sulfidemediated controlled ring-opening polymerization of α-amino acid N-carboxyanhydrides. Biomacromolecules 2016, 17, 891–896.

    CAS  PubMed  Google Scholar 

  45. 45

    Dimitrov, I.; Schlaad, H. Synthesis of nearly monodisperse polystyrene-polypeptide block copolymers via polymerisation of N-carboxyanhydrides. Chem. Commun. 2003, 2944–2945.

    Google Scholar 

  46. 46

    Conejos-Sanchez, I.; Duro-Castano, A.; Birke, A.; Barz, M.; Vicent, M. J. A controlled and versatile NCA polymerization method for the synthesis of polypeptides. J. Polym. Sci., Part A: Polym. Chem. 2013, 4, 3182–3186.

    CAS  Google Scholar 

  47. 47

    Vacogne, C. D.; Schlaad, H. Primary ammonium/tertiary amine-mediated controlled ring opening polymerisation of amino acid N-carboxyanhydrides. Chem. Commun. 2015, 51, 15645–15648.

    CAS  Google Scholar 

  48. 48

    Bhaw-Luximon, A.; Jhurry, D.; Belleney, J.; Goury, V. Polymerization of γ-methylglutamate N-carboxyanhydride using Al-Schiff’s base complexes as initiators. Macromolecules 2003, 36, 977–982.

    CAS  Google Scholar 

  49. 49

    Zhang, H. Y.; Nie, Y. Z.; Zhi, X. M.; Du, H. F.; Yang, J. Controlled ring-opening polymerization of α-amino acid N-carboxyanhydride by frustrated amine/borane Lewis pairs. Chem. Commun. 2017, 53, 5155–5158.

    CAS  Google Scholar 

  50. 50

    Yuan, J. S.; Zhang, Y.; Li, Z. Z.; Wang, Y. Y.; Lu, H. A S-Sn Lewis pair-mediated ring-opening polymerization of α-amino acid N-carboxyanhydrides: fast kinetics, high Molecular weight, and facile bioconjugation. ACS Macro Lett. 2018, 7, 892–897.

    CAS  Google Scholar 

  51. 51

    Zhao, W.; Gnanou, Y.; Hadjichristidis, N. Organocatalysis by hydrogen-bonding: a new approach to controlled/living polymerization of α-amino acid N-carboxyanhydrides. J. Polym. Sci., Part A: Polym. Chem. 2015, 6, 6193–6201.

    CAS  Google Scholar 

  52. 52

    Zou, J.; Fan, J.; He, X.; Zhang, S.; Wang, H.; Wooley, K. L. A facile glovebox-free strategy to significantly accelerate the syntheses of well-defined polypeptides by N-carboxyanhydride (NCA) ring opening polymerizations. Macromolecules 2013, 46, 4223–4226.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Aliferis, T.; Iatrou, H.; Hadjichristidis, N. Living polypeptides. Biomacromolecules 2004, 5, 1653–1656.

    CAS  PubMed  Google Scholar 

  54. 54

    Habraken, G. J. M.; Wilsens, K. H. R. M.; Koning, C. E.; Heise, A. Optimization of N-carboxyanhydride (NCA) polymerization by variation of reaction temperature and pressure. Polym. Chem. 2011, 2, 1322–1330.

    CAS  Google Scholar 

  55. 55

    Pickel, D. L.; Politakos, N.; Avgeropoulos, A.; Messman, J. M. A mechanistic study of α-(amino acid)-N-carboxyanhydride polymerization: comparing initiation and termination events in high-vacuum and traditional polymerization techniques. Macromolecules 2009, 42, 7781–7788.

    CAS  Google Scholar 

  56. 56

    Vayaboury, W.; Giani, O.; Cottet, H.; Deratani, A.; Schue, F. Living polymerization of α-amino acid N-carboxyanhydrides (NCA) upon decreasing the reaction temperature. Macromol. Rapid Commun. 2004, 25, 1221–1224.

    CAS  Google Scholar 

  57. 57

    Habraken, G. J. M.; Peeters, M.; Dietz, C. H. J. T.; Koning, C. E.; Heise, A. How controlled and versatile is N-carboxy anhydride (NCA) polymerization at 0 °C? Effect of temperature on homo-, block- and graft (co)polymerization J. Polym. Sci., Part A: Polym. Chem. 2010, 1, 514–524.

    CAS  Google Scholar 

  58. 58

    Wu, Y.; Zhang, D.; Ma, P.; Zhou, R.; Hua, L.; Liu, R. Lithium hexamethyldisilazide initiated superfast ring opening polymerization of α-amino acid N-carboxyanhydrides. Nat. Commun. 2018, 9, 5297.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Ding, J. D. Glovebox free and rapid ring-opening polymerization of α-amino acid N-carboxyanhydrides in open-vessels. J. Funct. Polym 2019, 32, 120–122.

    CAS  Google Scholar 

  60. 60

    Wan, X. H.; Wang, X. H. Catalytic system for superfast polypeptide synthesis under atmosphere condition. Acta Polymerica Sinica (in Chinese) 2019, 50, 99–101.

    Google Scholar 

  61. 61

    Shifang, L. Facile preparation of polypeptides: moisture insensitive and superfast ring opening polymerization of N-carboxyanhydri. Mater. Rep. 2019, 33, 1–2.

    Google Scholar 

  62. 62

    Huesmann, D.; Birke, A.; Klinker, K.; Turk, S.; Rader, H. J.; Barz, M. Revisiting secondary structures in NCA polymerization: influences on the analysis of protected polylysines. Macromolecules 2014, 47, 928–936.

    CAS  Google Scholar 

  63. 63

    Neufeld, R.; Michel, R.; Herbst-Irmer, R.; Schone, R.; Stalke, D. Introducing a hydrogen-bond donor into a weakly nucleophilic bronsted base: alkali metal hexamethyldisilazides (MHMDS, M = Li, Na, K, Rb and Cs) with ammonia. Chem. Eur. J. 2016, 22, 12340–12346.

    CAS  PubMed  Google Scholar 

  64. 64

    Kricheldorf, H. R. Polypeptides and 100 years of chemistry of α-amino acid N-carboxyanhydrides. Angew. Chem. Int. Ed. 2006, 45, 5752–5784.

    CAS  Google Scholar 

  65. 65

    Kuo, S. W.; Tsai, H. T. Control of peptide secondary structure on star shape polypeptides tethered to polyhedral oligomeric silsesquioxane nanoparticle through click chemistry. Polymer 2010, 51, 5695–5704.

    CAS  Google Scholar 

  66. 66

    Yu, S. L.; Xiang, X. H.; Zholu, J. L.; Qiu, T.; Hu, Z. X.; Zhu, M. F. Typical polymer fiber materials: an overview and outlook. Acta Polymerica Sinica (in Chinese) 2020, 51, 39–54.

    Google Scholar 

  67. 67

    Guo, L.; Lahasky, S. H.; Ghale, K.; Zhang, D. H. N-heterocyclic carbene-mediated zwitterionic polymerization of N-substituted N-carboxyanhydrides toward poly(α-peptoid)s: kinetic, mechanism, and architectural control. J. Am. Chem. Soc. 2012, 134, 9163–9171.

    CAS  PubMed  Google Scholar 

  68. 68

    Kricheldorf, H. R.; von Lossow, C.; Schwarz, G. Cyclic polypeptides by solvent-induced polymerizations of α-amino acid N-carboxyanhydrides. Macromolecules 2005, 38, 5513–5518.

    CAS  Google Scholar 

  69. 69

    Schmid, R. Re-interpretation of the solvent dielectric constant in coordination chemical terms. J. Sol. Chem. 1983, 12, 135–152.

    CAS  Google Scholar 

  70. 70

    Deng, C.; Wu, J.; Cheng, R.; Meng, F.; Klok, H.; Zhong, Z. Functional polypeptide and hybrid materials: Precision synthesis via α-amino acid N-carboxyanhydride polymerization and emerging biomedical applications. Prog. Polym. Sci. 2014, 39, 330–364.

    CAS  Google Scholar 

  71. 71

    Zhou, M.; Qian, Y.; Xie, J.; Zhang, W.; Jiang, W.; Xiao, X.; Chen, S.; Dai, C.; Cong, Z.; Ji, Z.; Shao, N.; Liu, L.; Wu, Y.; Liu, R. Poly(2-ocazoline)-based functional peptide mimics: eradicating MRSA infections and persisters while alleviating antimicrobial resistance. Angew. Chem. Int. Ed. 2020, 59, 6412–6419.

    CAS  Google Scholar 

  72. 72

    Idelson, M.; Blout, E. High molecular weight poly-α,L-glutamic acid: preparation and optical rotation changes. J. Am. Chem. Soc. 1958, 80, 4631–4634.

    CAS  Google Scholar 

  73. 73

    Seeney, C. E.; Harwood, H. J. Carbamate ions as propagating species in N-carboxy anhydride polymerizations. J. Macromol. Sci. A Chem. 1975, 9, 779–795.

    Google Scholar 

  74. 74

    Kricheldorf, H. R.; von Lossow, C.; Schwarz, G. Tertiary amine catalyzed polymerizations of α-amino acid N-carboxyanhydrides: the role of cyclization. J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 4680–4695.

    CAS  Google Scholar 

  75. 75

    Jiang, W. N.; Xiao, X. M.; Wu, Y. M.; Zhang, W. W.; Cong, Z. H.; Liu, J. J.; Chen, S.; Zhang, H. D.; Xie, J. Y.; Deng, S.; Chen, M. Z.; Wang, Y.; Shao, X. Y.; Dai, Y. D.; Sun, Y.; Fei, J.; Liu, R. H. Peptide polymer displaying potent activity against clinically isolated multidrug resistant Pseudomonas aeruginosa in vitro and in vivo. Biomater. Sci. 2020, 8, 739–745.

    CAS  PubMed  Google Scholar 

Download references


This work was financially supported by the National Natural Science Foundation of China (Nos. 21774031 and 21861162010), the National Key Research and Development Program of China (No. 2016YFC1100401), Research Program of State Key Laboratory of Bioreactor Engineering, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Donghua University, the Fundamental Research Funds for the Central Universities (Nos. 22221818014 and 50321041917001). The authors also thank Research Center of Analysis and Test of East China University of Science and Technology for the help on the characterization.

Author information



Corresponding author

Correspondence to Run-Hui Liu.

Electronic Supplementary Information


Facile Synthesis of High Molecular Weight Polypeptides via Fast and Moisture Insensitive Polymerization of α-Amino Acid N-Carboxyanhydrides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, YM., Zhang, WW., Zhou, RY. et al. Facile Synthesis of High Molecular Weight Polypeptides via Fast and Moisture Insensitive Polymerization of α-Amino Acid N-Carboxyanhydrides. Chin J Polym Sci 38, 1131–1140 (2020).

Download citation


  • NCA polymerization
  • Polypeptide
  • Open vessel
  • Fast polymerization
  • High Mw