Skip to main content
Log in

Effect of Chain Configuration on Thermal Conductivity of Polyethylene—A Molecular Dynamic Simulation Study

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Stretched polyethylene (PE) fibers are found to have super high thermal conductivity, while the bulk of polyethylene is usually thermal insulating even for those with high crystalline degree. A molecular dynamic simulation is deliberately carried out to examine the relationship between chain configuration and thermal conductivity of polyethylene. In this simulation study, independent and interacting PE chains being stretched are compared with the aim to find out the effect of stretching on thermal conductivity of PE. Various crystallization conditions for PE bulk are considered. It is found that heat transports predominately along the covalent chain rather than across chains in PE crystals. Our simulation study helps to understand experimental findings on thermal conductivity of PE at different states. We also predict that amorphous PE may be super thermally conductive if chains are strictly stretched along heat flux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mamunya, Y. P.; Davydenko, V. V.; Pissis, P.; Lebedev, E. V. Electrical and thermal conductivity of polymers filled with metal powders. Eur. Polym. J.2002, 38, 1887–1897.

    Article  CAS  Google Scholar 

  2. Evgin, T.; Koca, H. D.; Horny, N.; Turgut, A.; Tavman, I. H.; Chirtoc, M.; Omastová, M.; Novak, I. Effect of aspect ratio on thermal conductivity of high density polyethylene/multi-walled carbon nanotubes nanocomposites. Compos. Pt. A-Appl. Sci. Manuf.2016, 82, 208–2013.

    Article  CAS  Google Scholar 

  3. Hong, W. T.; Tai, N. H. Investigations on the thermal conductivity of composites reinforced with carbon nanotubes. Diam. Relat. Mater.2008, 17, 1577–1581.

    Article  CAS  Google Scholar 

  4. Yang, J.; Zhang, E.; Li, X.; Zhang, Y.; Qu, J.; Yu, Z. Z. Cellulose/graphene aerogel supported phase change composites with high thermal conductivity and good shape stability for thermal energy storage. Carbon2016, 98, 50–57.

    Article  CAS  Google Scholar 

  5. Huang, J. R.; Zhu, Y. T.; Xu, L.; Chen, J.; Jiang, W.; Nie, X. Massive enhancement in the thermal conductivity of polymer composites by trapping graphene at the interface of a polymer blend. Compos. Sci. Technol.2016, 129, 160–165.

    Article  CAS  Google Scholar 

  6. Yu, S. Z.; Hing, P.; Hu, X. Thermal conductivity of polystyrene-aluminum nitride composite. Compos. Pt. A-Appl. Sci. Manuf.2002, 33, 0–292.

    Google Scholar 

  7. Pezzotti, G.; Kamada, I.; Miki, S. Thermal conductivity of AlN/polystyrene interpenetrating networks. J. Eur. Ceram. Soc.2000, 20, 1197–1203.

    Article  CAS  Google Scholar 

  8. Morelli, D. T.; Heremans, J. P. Thermal conductivity of germanium, silicon, and carbon nitrides. Appl. Phys. Lett.2002, 81, 5126–5128.

    Article  CAS  Google Scholar 

  9. Zhang, R. H.; Shi, X. T.; Tang, L.; Liu, Z.; Zhang, J. L.; Guo, Y. Q.; Gu, J. W. Thermally conductive and insulating epoxy composites by synchronously incorporating Si-sol functionalized glass fibers and boron nitride fillers. Chinese J. Polym. Sci.2020, 38, 730–739.

    Article  CAS  Google Scholar 

  10. Yang, X. T.; Fan, S. G.; Li, Y.; Guo, Y. Q.; Li, Y. G.; Ruan, K. P.; Zhang, S. M.; Zhang, J. L.; Kong, J.; Gu, J. W. Synchronously improved electromagnetic interference shielding and thermal conductivity for epoxy nanocomposites by constructing 3D copper nanowires/thermally annealed graphene aerogel framework. Compos. Pt. A-Appl. Sci. Manuf.2020, 128, 105670.

    Article  CAS  Google Scholar 

  11. Ma, T. B.; Zhao, Y. S.; Ruan, K. P.; Liu, X. R.; Zhang, J. L.; Guo, Y. Q.; Yang, X. T.; Kong, J.; Guo, J. W. Highly thermal conductivities, excellent mechanical robustness and flexibility, and outstanding thermal stabilities of aramid nanofifiber composite papers with nacre-mimetic layered structures. ACS Appl. Mater. Interfaces2020, 12, 1677–1686.

    Article  CAS  Google Scholar 

  12. Guo, Y. Q.; Ruan, K. P.; Shi, X. T.; Yang, X. T.; Gu, J. W. Factors affecting thermal conductivities of the polymers and polymer composites: a review. Compos. Sci. Technol.2020, 19, 108134.

    Article  Google Scholar 

  13. Sperling, L. H. in Introduction to physical polymer science, 4th Ed. John Wiley & Sons Inc, 2005, p. 845.

  14. Peacock, A. Handbook of polyethylene: structures, properties and applications. Sib. Math. J.2000, 40, 1146–1156.

    Google Scholar 

  15. David, D. J.; Misra, A. in Relating materials properties to structure: handbook and aoftware for polymer calculations and materials properties. Technomic, PA, 1999, p. 17–49.

  16. Henry, A.; Chen, G. High thermal conductivity of single polyethylene chains using molecular dynamics simulations. Phys. Rev. Lett.2008, 101, 235502.

    Article  Google Scholar 

  17. Shen, S.; Henry, A.; Tong, J.; Zheng, R.; Chen, G. Polyethylene nanofibres with very high thermal conductivities. Nat. Nanotechnol.2010, 5, 251–255.

    Article  CAS  Google Scholar 

  18. Henry, A.; Chen, G.; Plimpton, S. J.; Thompson, A. 1D-to-3D transition of phonon heat conduction in polyethylene using molecular dynamics simulations. Phys. Rev. B2010, 82, 144308.

    Article  Google Scholar 

  19. Zhang, T.; Luo, T. F. Morphology-influenced thermal conductivity of polyethylene single chains and crystalline fibers. J. Appl. Phys. 2012, 112, 094304.

    Article  Google Scholar 

  20. Luo, D.; Huang, C.; Huang, Z. Decreased thermal conductivity of polyethylene chain influenced by short chain branching. J. Heat Transfer.2018, 140, 031302.

    Article  Google Scholar 

  21. Tu, R.; Liao, Q.; Zeng, L.; Liu, Z.; Liu, W. Impact of torsion and stretching on the thermal conductivity of polyethylene strands. Appl. Phys. Lett.2017, 110, 101905.

    Article  Google Scholar 

  22. Wang, X. J.; Kaviany M.; Huang, B. L. Phonon coupling and transport in individual polyethylene chains: a comparison study with the bulk crystal. Nanoscale2017, 9, 18022–18031.

    Article  CAS  Google Scholar 

  23. Loomis, J.; Ghasemi, H.; Huang, X. P.; Thoppey, N.; Wang, J.; Tong, J. K.; Xu, Y.; Li, X.; Lin, C. T.; Chen, G. Continuous fabrication platform for highly aligned polymer films. Technology2014, 2, 189–199.

    Article  Google Scholar 

  24. Xu, Y. F.; Kraemer, D.; Song, B.; Zhang, J; Zhou, J. W.; Loomis, J.; Wang, J. J.; Li, M. D.; Ghasemi, H.; Huang, X. P.; Li, X. B.; Chen, G. Nanostructured polymer films with metal-like thermal conductivity. Nat. Commun.2019, 10, 1771.

    Article  Google Scholar 

  25. Robbins, A. B.; Minnich, A. J. Crystalline polymers with exceptionally low thermal conductivity studied using molecular dynamics. Appl. Phys. Lett.2015, 107, 201908.

    Article  Google Scholar 

  26. Accelrys Software Inc. Materials Studio Release Notes, Release 7.0. San Diego, Accelrys Software Inc., 2013.

  27. Sun, H.; Mumby, S. J.; Maple, J. R.; Hagler, A. T. An ab Initio CFF93 all-atom force field for polycarbonates. J. Am. Chem. Soc.1994, 116, 2978–2987.

    Article  CAS  Google Scholar 

  28. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys.1995, 117, 1–19.

    Article  CAS  Google Scholar 

  29. Takeuchi, H. Structure formation during the crystallization induction period of a short chain-molecule system: a molecular dynamics study. J. Chem. Phys.1998, 109, 5614–5621.

    Article  CAS  Google Scholar 

  30. Schelling, P. K.; Phillpot, S. R.; Keblinski, P. Comparison of atomic-level simulation methods for computing thermal conductivity. Phys. Rev. B2002, 65, 144306.

    Article  Google Scholar 

  31. Schelling, P. K.; Phillpot, S. R.; Keblinski, P. Kapitza conductance and phonon scattering at grain boundaries by simulation. J. Appl. Phys.2004, 95, 6082–6091.

    Article  CAS  Google Scholar 

  32. Oligschkeger, C.; Schön, J. C. Simulation of thermal conductivity and heat transport in solids. Phys. Rev. B1999, 59, 4125–4133.

    Article  Google Scholar 

  33. Luo, T. F.; Esfarjani, K.; Shiomi, J.; Henry, A.; Chen, G. Molecular dynamics simulation of thermal energy transport in polydimethylsiloxane. J. Appl. Phys.2011, 109, 074321.

    Article  Google Scholar 

  34. Liu, J.; Yang, R. Length-dependent thermal conductivity of single extended polymer chains. Phys. Rev. B2012, 86, 104307.

    Article  Google Scholar 

  35. Singh, V.; Bougher, T. L.; Weathers, A.; Cai, Y.; Bi, K.; Pettes, M. T.; McMenamin, S. A.; Lv, W.; Resler, D. P.; Gattuso, T. R.; Altman, D. H.; Sandhage, K. H.; Shi, L.; Henry, A.; Cola, B. A. High thermal conductivity of chain-oriented amorphous polythiophene. Nat. Nanotechnol.2014, 9, 384–390.

    Article  CAS  Google Scholar 

  36. Zhu, B. W.; Liu, J.; Wang, T. Y.; Han, M.; Valloppilly, S.; Xu, S.; Wang, X. W. Novel polyethylene fibers of very high thermal conductivity enabled by amorphous restructuring. ACS Omega2017,2, 3931–3944.

    Article  CAS  Google Scholar 

  37. Gu, J. W.; Yang, X. T.; Lv, Z. Y.; Li, N.; Liang, C. B.; Zhang, Q. Y. Functionalized graphite nanoplatelets/epoxy resin nanocomposites with high thermal conductivity. Int. J. Heat Mass Transf.2016, 92, 15–22.

    Article  CAS  Google Scholar 

  38. Zhang, Y. H.; Park, S. J. In situ shear-induced mercapto group-activated graphite nanoplatelets for fabricating mechanically strong and thermally conductive elastomer composites for thermal management applications. Compos. Pt. A Appl. Sci. Manuf.2018, 112, 40–48.

    Article  CAS  Google Scholar 

  39. Liu, Z.; Li, J. H.; Liu, X. H. Novel functionalized BN nanosheets/epoxy composites with advanced thermal conductivity and mechanical properties. ACS Appl. Mater. Interfaces2020, 12, 6503–6515.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Key R&D Program of China (No. 2017YFB0406204), the National Natural Science Foundation of China (No. 51973002), and University Institution of High Performance Rubber Materials of Anhui Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Chen or Jia-Sheng Qian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Wang, Y., Xia, R. et al. Effect of Chain Configuration on Thermal Conductivity of Polyethylene—A Molecular Dynamic Simulation Study. Chin J Polym Sci 38, 1418–1425 (2020). https://doi.org/10.1007/s10118-020-2466-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2466-y

Keywords

Navigation