Transparency of Temperature-responsive Shape-memory Gels Tuned by a Competition between Crystallization and Glass Transition

Abstract

Transparency is often an important property in the practical applications of temperature-responsive shape-memory gels. We investigated the mechanism of significant transparency improvement upon a change in two copolymer gels with their molar ratios between stearyl acrylate and N, N-dimethylacrylamide from 1:1 to 0.75:1. By means of Flash DSC measurement, we made the thermal analysis characterization of crystallization and glass transition in two copolymer gels and compared the results to the parallel experiments of corresponding homopolymers. The results showed that the slightly lower content of stearyl acrylate sequences suppresses crystallization in their side chains due to the chemical confinement of comonomers on copolymer crystallization; meanwhile it shifts up the glass transition temperature of the backbone N, N-dimethylacrylamide sequences. Eventually on cooling, crystallization gives its priority position to glass transition in copolymer gels, resulting in a higher transparency of the gel without losing the shape-memory performance. To confirm the chemical confinement, we further compared the isothermal crystallization kinetics of stearyl acrylate side chains in the copolymer gel to that of their homopolymer. Our observations facilitate the rational design of the temperature-responsive shape-memory gels for the transparency property.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Lendlein, A.; Kelch, S. Shape-memory polymers. Angew. Chem. Int. Ed.2002, 41, 2034–2057.

    CAS  Google Scholar 

  2. 2

    Behl, M.; Lendlein, A. Shape-memory polymers. Mater. Today2007, 10, 20–28.

    CAS  Google Scholar 

  3. 3

    Liu, C.; Qin, H.; Mather, P. T. Review of progress in shape-memory polymers. J. Mater. Chem.2007, 17, 1543–1558.

    CAS  Google Scholar 

  4. 4

    Huang, W. M.; Ding, Z.; Wang, C. C.; Wei, J.; Zhao, Y.; Purnawali, H. Shape memory materials. Mater. Today2010, 13, 54–61.

    CAS  Google Scholar 

  5. 5

    Xie, T. Recent advances in polymer shape memory. Polymer2011, 52, 4985–5000.

    CAS  Google Scholar 

  6. 6

    Zhao, Q.; Qi, H. J.; Xie, T. Recent progress in shape memory polymer: new behavior, enabling materials, and mechanistic understanding. Prog. Polym. Sci.2015, 49–50, 79–120.

    Google Scholar 

  7. 7

    Leng, J.; Lan, X.; Liu, Y.; Du, S. Shape-memory polymers and their composites: stimulus methods and applications. Prog. Mater. Sci. 2011, 56, 1077–1135.

    CAS  Google Scholar 

  8. 8

    Hu, J.; Zhu, Y.; Huang, H.; Lu, J. Recent advances in shape-memory polymers: structure, mechanism, functionality, modeling and applications. Prog. Polym. Sci.2012, 37, 1720–1763.

    CAS  Google Scholar 

  9. 9

    Hager, M. D.; Bode, S.; Weber, C.; Schubert, U. S. Shape memory polymers: past, present and future developments. Prog. Polym. Sci.2015, 49–50, 3–33.

    Google Scholar 

  10. 10

    Osada, Y.; Matsuda, A. Shape memory in hydrogels. Nature1995, 376, 219–219.

    CAS  PubMed  Google Scholar 

  11. 11

    Okano, T. Molecular design of temperature-responsive polymers as intelligent materials. In Responsive gels: volume transitions II; Dušek, K., Ed.; Springer Berlin Heidelberg: Berlin, Heidelberg, 1993, pp. 179–197.

    Google Scholar 

  12. 12

    Osada, Y.; Gong, J. P. Soft and wet materials: polymer gels. Adv. Mater.1998, 10, 827–837.

    CAS  Google Scholar 

  13. 13

    Sun, L.; Huang, W. M.; Ding, Z.; Zhao, Y.; Wang, C. C.; Purnawali, H.; Tang, C. Stimulus-responsive shape memory materials: a review. Mater. Design2012, 33, 577–640.

    CAS  Google Scholar 

  14. 14

    Chaterji, S.; Kwon, I. K.; Park, K. Smart polymeric gels: redefining the limits of biomedical devices. Prog. Polym. Sci.2007, 32, 1083–1122.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Yokoo, T.; Hidema, R.; Furukawa, H. Smart lenses developed with high-strength and shape memory gels. e-J. Surf. Sci. Nanotech.2012, 10, 243–247.

    CAS  Google Scholar 

  16. 16

    Kabir, M. H.; Gong, J.; Watanabe, Y.; Makino, M.; Furukawa, H. Hard-to-soft transition of transparent shape memory gels and the first observation of their critical temperature studied with scanning microscopic light scattering. Mater. Lett. 2013, 108, 239–242.

    CAS  Google Scholar 

  17. 17

    Lendlein, A.; Langer, R. Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science2002, 296, 1673.

    PubMed  Google Scholar 

  18. 18

    Yamano, M.; Akiaba, N.; Gong, J.; Furukawa, H. Experiments of a two-arm robot using shape memory gel. Proceedings of 2012 IEEE/SICE International Symposium on System Integration2012, 648–653.

    Google Scholar 

  19. 19

    Yamano, M.; Goto, D.; Ujiie, K.; Akiaba, N.; Gong, J.; Furukawa, H.; Tadakuma, R. Experiments of a variable stiffness robot using shape memory gel. Proceedings of 2012 IEEE/SICE International Symposium on System Integration2013, 647–652.

    Google Scholar 

  20. 20

    Harada, S.; Hidema, R.; Gong, J.; Furukawa, H. Intelligent button developed using smart soft and wet materials. Chem. Lett.2012, 41, 1047–1049.

    CAS  Google Scholar 

  21. 21

    Kaufman, H. S.; Sacher, A.; Alfrey, T.; Fankuchen, I. Side-chain crystallization in alkyl polyacrylates. J. Am. Chem. Soc.1948, 70, 3147–3147.

    CAS  Google Scholar 

  22. 22

    Morosoff, N.; Morawetz, H.; Post, B. Polymerization in the crystalline state. VII. A crystallographic study of the radiation-initiated polymerization in single crystals of vinyl stearate1, 2. J. Am. Chem. Soc1965, 87, 3035–3040.

    CAS  Google Scholar 

  23. 23

    Platé, N. A.; Shibaev, V. P. Comb-like polymers. structure and properties. J. Polym. Sci.: Macromol. Rev.1974, 8, 117–253.

    Google Scholar 

  24. 24

    Lee, J. L.; Pearce, E. M.; Kwei, T. K. Side-chain crystallization in alkyl-substituted semiflexible polymers. Macromolcuulss1997, 30, 6877–6883.

    CAS  Google Scholar 

  25. 25

    Matsuda, A.; Sato, J. I.; Yasunaga, H.; Osada, Y. Order-disorder transition of a hydrogel containing an n-alkyl acrylate. Macromolecules1994, 27, 7695–7698.

    CAS  Google Scholar 

  26. 26

    Beiner, M.; Huth, H. Nanophase separation and hindered glass transition in side-chain polymers. Nat. Mater.2003, 2, 595–599.

    CAS  PubMed  Google Scholar 

  27. 27

    Pritchard, R. The transparency of crystalline polymers. Polym. Eng. Sci.1964, 4, 66–71.

    CAS  Google Scholar 

  28. 28

    López-Barrón, C. R.; Tsou, A. H.; Younker, J. M.; Norman, A. I.; Schaefer, J. J.; Hagadorn, J. R.; Throckmorton, J. A. Microstructure of crystallizable a-olefin molecular bottlebrushes: isotactic and atactic poly(L-octadecene). Macromolecules2018, 51, 872–883.

    Google Scholar 

  29. 29

    Hu, W. Principles of polymer crystallization (In Chinese). Chemical Industry Press, Beijing, 2013.

    Google Scholar 

  30. 30

    Hu, W.; Frenkel, D. Polymer crystallization driven by anisotropic interactions. Adv. Polym. Sci.2005, 191, 1–35.

    CAS  Google Scholar 

  31. 31

    Hu, W. Polymer physics: a molecular approach. Springer-Verlag: Wien, 2013.

    Google Scholar 

  32. 32

    Hu, W. The physics of polymer chain-folding. Phys. Rep. 2018, 747, 1–50.

    CAS  Google Scholar 

  33. 33

    Hu, W.; Mathot, V. B. F.; Frenkel, D. Phase transitions of bulk statistical copolymers studied by dynamic Monte Carlo simulations. Macromolecules2003, 36, 2165–2175.

    CAS  Google Scholar 

  34. 34

    Hu, W.; Mathot, V. B. F.; Alamo, R. G.; Gao, H.; Chen, X. Crystallization of statistical copolymers. Adv. Polym. Sci.2017, 276, 1–43.

    CAS  Google Scholar 

  35. 35

    Schick, C. Differential scanning calorimetry (DSC) of semicrystalline polymers. Anal. Bioanal. Chem.2009, 995, 1589–1611.

    Google Scholar 

  36. 36

    Schawe, J. E. K.; Pogatscher, S. Material characterization by fast scanning calorimetry: practice and applications. In Fast Scanning Calorimetry. Schick, C.; Mathot, V., Eds., Springer International Publishing, Cham, 2016, 3–80.

    Google Scholar 

  37. 37

    Mathot, V.; Pyda, M.; Pijpers, T.; Vanden Poel, G.; van de Kerkhof, E.; van Herwaarden, S.; van Herwaarden, F.; Leenaers, A. The Flash DSC 1, a power compensation twin-type, chip-based fast scanning calorimeter (FSC): first findings on polymers. Thermochim. Acta2011, 522, 36–45.

    CAS  Google Scholar 

  38. 38

    Van Herwaarden, S.; Iervolino, E.; Van Herwaarden, F.; Wijffels, T.; Leenaers, A.; Mathot, V. Design, performance and analysis of thermal lag of the UFS1 twin-calorimeter chip for fast scanning calorimetry using the Mettler-Toledo Flash DSC 1. Thermochim. Acta2011, 522, 46–52.

    CAS  Google Scholar 

  39. 39

    Poel, G. V.; Istrate, D.; Magon, A.; Mathot, V. Performance and calibration of the Flash DSC 1, a new, MEMS-based fast scanning calorimeter. J. Therm. Anal. Calorim.2012, 110, 1533–1546.

    Google Scholar 

  40. 40

    Iervolino, E.; van Herwaarden, A. W.; van Herwaarden, F. G.; van de Kerkhof, E.; van Grinsven, P. P. W.; Leenaers, A. C. H. I.; Mathot, V. B. F.; Sarro, P. M. Temperature calibration and electrical characterization of the differential scanning calorimeter chip UFS1 for the Mettler-Toledo Flash DSC 1. Thermochim. Acta2011, 522, 53–59.

    CAS  Google Scholar 

  41. 41

    Li, Z.; Zhou, D.; Hu, W. Recent progress on Flash DSC study of polymer crystallization and melting. Acta Polymerica Sinica (in Chinese) 2016, 1179–1197.

    Google Scholar 

  42. 42

    Toda, A.; Androsch, R.; Schick, C. Insights into polymer crystallization and melting from fast scanning chip calorimetry. Polymer2016, 91, 239–263.

    CAS  Google Scholar 

  43. 43

    Schick, C.; Androsch, R.; Schmelzer, J. W. P. Homogeneous crystal nucleation in polymers. J. Phys.: Condens. Matter2017, 29, 453002.

    CAS  Google Scholar 

  44. 44

    He, Y.; Xie, K.; Wang, Y.; Zhou, D.; Hu, W. Characterization of polymer crystallization kinetics via fast-scanning chip-calorimetry. Acta Phys. -Chim. Sin.2020, 36, 1905081.

    Google Scholar 

  45. 45

    Cavallo, D.; Gardella, L.; Alfonso, G. C.; Mileva, D.; Androsch, R. Effect of comonomer partitioning on the kinetics of mesophase formation in random copolymers of propene and higher a-olefins. Polymer2012, 53, 4429–4437.

    CAS  Google Scholar 

  46. 46

    Cavallo, D.; Zhang, L.; Portale, G.; Alfonso, G. C.; Janani, H.; Alamo, R. G. Unusual crystallization behavior of isotactic polypropylene and propene/1-alkene copolymers at large undercoolings. Polymer2014, 55, 3234–3241.

    CAS  Google Scholar 

  47. 47

    Mileva, D.; Androsch, R. Effect of co-unit type in random propylene copolymers on the kinetics of mesophase formation and crystallization. Colloid. Polym. Sci.2012, 290, 465–471.

    CAS  Google Scholar 

  48. 48

    Zhuravlev, E.; Madhavi, V.; Lustiger, A.; Androsch, R.; Schick, C. Crystallization of polyethylene at large undercooling. ACS Macro Lett.2016, 5, 365–370.

    CAS  Google Scholar 

  49. 49

    Kalapat, D.; Tang, Q.; Zhang, X.; Hu, W. Comparing crystallization kinetics among two G-resin samples and iPP via flash DSC measurement. J. Therm. Anal. Calorim.2017, 128, 1859–1866.

    CAS  Google Scholar 

  50. 50

    Cai, J.; Luo, R.; Lv, R.; He, Y.; Zhou, D.; Hu, W. Crystallization kinetics of ethylene-co-propylene rubber/isotactic polypropylene blend investigated via chip-calorimeter measurement. Eur. Polym. J.2017, 96, 79–86.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21973042 and 21734005), Program for Changjiang Scholars and Innovative Research Teams (No. IRT1252), CAS Interdisciplinary Innovation Team, and JSPS KAKENHI 18K05228.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Jin Gong or Wen-Bing Hu.

Electronic Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, YH., Gong, J. & Hu, WB. Transparency of Temperature-responsive Shape-memory Gels Tuned by a Competition between Crystallization and Glass Transition. Chin J Polym Sci 38, 1374–1381 (2020). https://doi.org/10.1007/s10118-020-2456-0

Download citation

Keywords

  • Gels
  • Shape memory
  • Copolymer
  • Crystallization
  • Glass transition