Skip to main content

Advertisement

Log in

Stereocomplexed Poly(lactide) Composites toward Engineering Plastics with Superior Toughness, Heat Resistance and Anti-hydrolysis

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Poly(lactide), PLA, suffers from brittleness and low heat deflection temperature (HDT), which limits its application as an engineering plastic. In this work, poly(L-lactide)/poly(D-lactide)/ethylene-vinyl acetate-glycidyl methacrylate random copolymer (PLLA/PDLA/EVM-GMA = 1/1/x) composites were prepared by melt blending, and the in situ formed EVM-g-PLA copolymers improved the compatibility between PLA and EVM-GMA. Subsequently, the blends were subjected to a two-step annealing process during compression molding, i.e. first annealing at 120 °C to rapidly form a certain amount of stereocomplex (sc) crystallites as nucleation sites, and then annealing at 200 °C to guide the formation of new sc crystallites. Both differential scanning calorimetry (DSC) and wide angle X-ray diffraction (WAXD) measurements confirmed the formation of highly stereocomplexed PLA products. Mechanical results showed that the PLLA/PDLA blend with 20 wt% of EVM-GMA had a notched impact strength up to 65 kJ/m2 and an elongation at break of 48%, while maintaining a tensile strength of 40 MPa. Meanwhile, dynamic mechanical analysis (DMA) and heat deflection tests showed that the PLA composite had an HDT up to 142 °C which is 90 °C higher than that of normal PLA products. Scanning electron microscopy (SEM) confirmed the fine dispersion of EVM-GMA particles, which facilitated to understand the toughening mechanism. Furthermore, the highly stereocomplexed PLA composites simultaneously exhibited excellent chemical and hydrolysis resistance. Therefore, these fascinating properties may extend the application range of sc-PLA material as an engineering bioplastic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reddy, M. M.; Vivekanandhan, S.; Misra, M.; Bhatia, S. K.; Mohanty, A. K. Biobased plastics and bionanocomposites: current status and future opportunities. Prog. Polym. Sci. 2013, 38, 1653–1689.

    CAS  Google Scholar 

  2. Chen, Y.; Wang, W.; Qiu, Y.; Li, L.; Qian, L.; Xin, F. Terminal group effects of phosphazene-triazine bi-group flame retardant additives in flame retardant polylactic acid composites. Polym. Degrad. Stab. 2017, 140, 166–175.

    CAS  Google Scholar 

  3. Yang, W.; Fortunati, E.; Dominici, F.; Giovanale, G.; Mazzaglia, A.; Balestra, G. M.; Kenny, J. M.; Puglia, D. Effect of cellulose and lignin on disintegration, antimicrobial and antioxidant properties of PLA active films. Int. J. Biol. Macromol. 2016, 89, 360–368.

    CAS  PubMed  Google Scholar 

  4. Yang, W.; Weng, Y.; Puglia, D.; Qi, G.; Dong, W.; Kenny, J. M.; Ma, P. Poly(lactic acid)/lignin films with enhanced toughness and anti-oxidation performance for active food packaging. Int. J. Biol. Macromol. 2020, 144, 102–110.

    CAS  PubMed  Google Scholar 

  5. Ma, P.; Shen, T.; Xu, P.; Dong, W.; Lemstra, P. J.; Chen, M. Superior performance of fully biobased poly(lactide) via stereocomplexation-induced phase separation: structure versus property. ACS Sustain. Chem. Eng. 2015, 3, 1470–1478.

    CAS  Google Scholar 

  6. Rhim, J. W.; Park, H. M.; Ha, C. S. Bio-nanocomposites for food packaging applications. Prog. Polym. Sci. 2013, 38, 1629–1652.

    CAS  Google Scholar 

  7. Wang, Y.; Wei, Z.; Leng, X.; Shen, K.; Li, Y. Highly toughened polylactide with epoxidized polybutadiene by in-sttu reactive compatibilization. Polymer 2016, 92, 74–83.

    CAS  Google Scholar 

  8. Nagarajan, V.; Mohanty, A. K.; Misra, M. Perspective on polylactic acid (PLA) based sustainable materials for durable applications: focus on toughness and heat resistance. ACS Sustain. Chem. Eng. 2016, 4, 2899–2916.

    CAS  Google Scholar 

  9. Oyama, H. T.; Abe, S. Stereocomplex poly(lactic acid) alloys with superb heat resistance and toughness. ACS Sustain. Chem. Eng. 2015, 3, 3245–3252.

    CAS  Google Scholar 

  10. Nagarajan, V.; Zhang, K.; Misra, M.; Mohanty, A. K. Overcoming the fundamental challenges in improving the impact strength and crystallinity of PLA biocomposites: influence of nucleating agent and mold temperature. ACS Appl. Mater. Interfaces 2015, 7, 11203–11214.

    CAS  PubMed  Google Scholar 

  11. Dong, W.; Jiang, F.; Zhao, L.; You, J.; Cao, X.; Li, Y. PLLA microalloys versus PLLA nanoalloys: preparation, morphologies, and properties. ACS Appl. Mater. Interfaces 2012, 4, 3667–3675.

    CAS  PubMed  Google Scholar 

  12. Spinella, S.; Cai, J.; Samuel, C.; Zhu, J.; McCallum, S. A.; Habibi, Y.; Raquez, J. M.; Dubois, P.; Gross, R. A. Polylactide/poly(ω-hydroxytetradecanoic acid) reactive blending: a green renewable approach to improving polylactide properties. Biomacromolectles 2015, 16, 1818–1826.

    CAS  Google Scholar 

  13. Liu, H.; Song, W.; Chen, F.; Guo, L.; Zhang, J. Interaction of microstructure and interfacial adhesion on impact performance of polylactide (PLA) ternary blends. Macromolecules 2011, 44, 1513–1522.

    CAS  Google Scholar 

  14. Zhang, K.; Nagarajan, V.; Misra, M.; Mohanty, A. K. Supertoughened renewable PLA reactive multiphase blends system: phase morphology and performance. ACS Appl. Mater. Interfaces 2014, 6, 12436–12448.

    CAS  PubMed  Google Scholar 

  15. Wu, B.; Xu, P.; Yang, W.; Hoch, M.; Dong, W.; Chen, M.; Bai, H.; Ma, P. Super-toughened heat-resistant poly(lactic acid) alloys by tailoring the phase morphology and the crystallization behaviors. J. Polym. Sci. 2020, 58, 500–509.

    CAS  Google Scholar 

  16. Pan, G.; Xu, H.; Mu, B.; Ma, B.; Yang, J.; Yang, Y. Complete stereocomplexation of enantiomeric polylactides for scalable continuous production. Chem. Eng. J. 2017, 328, 759–767.

    CAS  Google Scholar 

  17. Jing, Y.; Zhang, L.; Huang, R.; Bai, D.; Bai, H.; Zhang, Q.; Fu, Q. Ultrahigh-performance electrospun polylactide membranes with excellent oil/water separation ability via interfacial stereocomplex crystallization. J. Mater. Chem. A 2017, 5, 19729–19737.

    CAS  Google Scholar 

  18. Brzezinski, M.; Bogusławska, M.; Ilcikova, M.; Mosnacek, J.; Biela, T. Unusual thermal properties of polylactides and polylactide stereocomplexes containing polylactide-functionalized multiwalled carbon nanotubes. Macromolecules 2012, 45, 8714–8721.

    CAS  Google Scholar 

  19. Li, Z.; Tan, B. H.; Lin, T.; He, C. Recent advances in stereocomplexation of enantiomeric PLA-based copolymers and applications. Prog. Polym. Sci. 2016, 62, 22–72.

    Google Scholar 

  20. Tan, B. H.; Muiruri, J. K.; Li, Z.; He, C. Recent progress in using stereocomplexation for enhancement of thermal and mechanical property of polylactide. ACS Sustain. Chem. Eng. 2016, 4, 5370–5391.

    CAS  Google Scholar 

  21. Pholharn, D.; Cheerarot, O.; Baimark, Y. Stereocomplexation and mechanical properties of polylactide-b-poly(propylene glycol)-b-polylactide blend films: effects of polylactide block length and blend ratio. Chinese J. Polym. Sci. 2017, 35, 1391–1401.

    CAS  Google Scholar 

  22. Wang, M.; You, L. C.; Guo, Y. Q; Jiang, N.; Gan, Z. H.; Ning, Z. B. Enhanced crystallization rate of poly(L-lactide)/hydroxyapatite-graft-poly(D-lactide) composite with different processing temperatures. Chinese J. Polym. Sci. 2020, 38, 599–610.

    CAS  Google Scholar 

  23. Li, Y.; Yu, Y. C.; Han, C. Y.; Wang, X. H.; Huang, D. X. Sustainable blends of poly(propylene carbonate) and stereocomplex polylactide with enhanced rheological properties and heat resistance. Chinese J. Polym. Sci. 2020, DOI: https://doi.org/10.1007/s10118-020-2408-8.

  24. Tsuji, H.; Ikada, Y. Stereocomplex formation between enantiomeric poly(lactic acids). 9. Stereocomplexation from the melt. Macromolecules 1993, 26, 6918–6926.

    CAS  Google Scholar 

  25. Feng, Y.; Lv, P.; Jiang, L.; Ma, P.; Chen, M.; Dong, W.; Chen, Y. Enhanced crystallization kinetics of symmetric poly(L-lactide)/poly(D-lactide) stereocomplex in the presence of nanocrystalline cellulose. Polym. Degrad. Stab. 2017, 146, 113–120.

    CAS  Google Scholar 

  26. Ma, P.; Jiang, L.; Xu, P.; Dong, W.; Chen, M.; Lemstra, P. J. Rapid stereocomplexation between enantiomeric comb-shaped cellulose-g-poly(L-lactide) nanohybrids and poly(D-lactide) from the melt. Biomacromolecules 2015, 16, 3723–3729.

    CAS  PubMed  Google Scholar 

  27. Deng, S.; Bai, H.; Liu, Z.; Zhang, Q.; Fu, Q. Toward supertough and heat-resistant stereocomplex-type polylactide/elastomer blends with impressive melt stability via in situ formation of graft copolymer during one-pot reactive melt blending. Macromolecules 2019, 52, 1718–1730.

    CAS  Google Scholar 

  28. Han, L.; Shan, G.; Bao, Y.; Pan, P. Exclusive stereocomplex crystallization of linear and multiarm star-shaped high-molecular-weight stereo diblock poly(lactic acid) s. J. Phys. Chem. B 2015, 119, 14270–14279.

    CAS  PubMed  Google Scholar 

  29. Zhang, Z. C.; Sang, Z. H.; Huang, Y. F.; Ru, J. F.; Zhong, G. J.; Ji, X.; Wang, R.; Li, Z. M. Enhanced heat deflection resistance via shear flow-induced stereocomplex crystallization of polylactide systems. ACS Sustain. Chem. Eng. 2017, 5, 1692–1703.

    CAS  Google Scholar 

  30. Zhang, Z. C.; Gao, X. R.; Hu, Z. J.; Yan, Z.; Xu, J. Z.; Xu, L.; Zhong, G. J.; Li, Z. M. Inducing stereocomplex crystals by template effect of residual stereocomplex crystals during thermal annealing of injection-molded polylactide. Ind. Eng. Chem. Res. 2016, 55, 10896–10905.

    CAS  Google Scholar 

  31. Shao, J.; Sun, J.; Bian, X.; Cui, Y.; Li, G.; Chen, X. Investigation of poly(lactide) stereocomplexes: 3-armed poly(L-lactide) blended with linear and 3-armed enantiomers. J. Phys. Chem. B 2012, 116, 9983–9991.

    CAS  PubMed  Google Scholar 

  32. Wang, X. F.; He, Z. Z.; Yang, J. H.; Zhang, N.; Huang, T.; Wang, Y.; Zhou, Z. W. Super toughened immiscible poly(L-lactide)/poly(ethylene vinyl acetate) (PLLA/EVA) blend achieved by in situ cross-linking reaction and carbon nanotubes. Compos. Part. A-Appl. S. 2016, 91, 105–116.

    CAS  Google Scholar 

  33. Liu, Z.; Zhang, X.; Zhu, X.; Qi, Z.; Wang, F. Effect of morphology on the brittle ductile transition of polymer blends: 1. A new equation for correlating morphological parameters. Polymer 1997, 38, 5267–5273.

    CAS  Google Scholar 

  34. Van den Oever, M.; Beck, B.; Müssig, J. Agrofibre reinforced poly(lactic acid) composites: effect of moisture on degradation and mechanical properties. Compos. Part. A-Appl. S. 2010, 41, 1628–1635.

    Google Scholar 

  35. Zhang, M. C.; Guo, B. H.; Xu, J. A review on polymer crystallization theories. Crystals 2017, 7, 4.

    CAS  Google Scholar 

  36. Liu, Z.; Luo, Y.; Bai, H.; Zhang, Q.; Fu, Q. Remarkably enhanced impact toughness and heat resistance of poly(L-lactide)/thermoplastic polyurethane blends by constructing stereocomplex crystallites in the matrix. ACS Sustain. Chem. Eng. 2016, 4, 111–120.

    Google Scholar 

  37. Bai, H.; Bai, D.; Xiu, H.; Liu, H.; Zhang, Q.; Wang, K.; Deng, H.; Chen, F.; Fu, Q.; Chiu, F. C. Towards high-performance poly(L-lactide)/elastomer blends with tunable interfacial adhesion and matrix crystallization via constructing stereocomplex crystallites at the interface. RSC Adv. 2014, 4, 49374–49385.

    CAS  Google Scholar 

  38. Tsuji, H. Poly(lactide) stereocomplexes: formation, structure, properties, degradation, and applications. Macromol. Biosci. 2005, 5, 569–597.

    CAS  PubMed  Google Scholar 

  39. Wu, B.; Zeng, Q.; Niu, D.; Yang, W.; Dong, W.; Chen, M.; Ma, P. Design of supertoughened and heat-resistant PLLA/elastomer blends by controlling the distribution of stereocomplex crystallites and the morphology. Macromolecules 2019, 22, 1092–1103.

    Google Scholar 

  40. Wu, S. Phase structure and adhesion in polymer blends: a criterion for rubber toughening. Polymer 1985, 26, 1855–1863.

    CAS  Google Scholar 

  41. Corté, L.; Leibler, L. A model for toughening of semicrystalline polymers. Macromolecules 2007, 40, 5606–5611.

    Google Scholar 

  42. Shi, Y. Y.; Zhang, W. B.; Yang, J. H.; Huang, T.; Zhang, N.; Wang, Y.; Yuan, G. P.; Zhang, C. L. Super toughening of the poly(L-lactide)/thermoplastic polyurethane blends by carbon nanotubes. RSC Adv. 2013, 3, 26271–26282.

    CAS  Google Scholar 

  43. Kayano, Y.; Keskkula, H.; Paul, D. R. Fracture behaviour of some rubber-toughened nylon 6 blends. Polymer 1998, 39, 2835–2845.

    CAS  Google Scholar 

  44. Kim, G. M.; Michler, G. Micromechanical deformation processes in toughened and particle filled semicrystalline polymers: Part 2. model representation for micromechanical deformation processes. Polymer 1998, 39, 5699–5703.

    CAS  Google Scholar 

  45. Xiong, Z.; Liu, G.; Zhang, X.; Wen, T.; de Vos, S.; Joziasse, C.; Wang, D. Temperature dependence of crystalline transition of highly-oriented poly(L-lactide)/poly(D-lactide) blend: in-situ synchrotron X-ray scattering study. Polymer 2013, 54, 964–971.

    CAS  Google Scholar 

  46. Anderson, K. S.; Schreck, K. M.; Hillmyer, M. A. Toughening polylactide. Polym. Rev. 2008, 48, 85–108.

    CAS  Google Scholar 

  47. Jang, K. S. Mechanics and rheology of basalt fiber-reinforced polycarbonate composites. Polymer 2018, 147, 133–141.

    CAS  Google Scholar 

  48. Deshmukh, G. S.; Peshwe, D.; Pathak, S.; Ekhe, J. A study on effect of mineral additions on the mechanical, thermal, and structural properties of poly(butylene terephthalate) (PBT) composites. J. Polym. Res. 2011, 18, 1081–1090.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51873082 and 51903106) and Fundamental Research Funds for the Central Universities (No. JUSRP11928).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei-Jun Yang or Pi-Ming Ma.

Electronic Supplementary Information

10118_2020_2443_MOESM1_ESM.pdf

Stereocomplexed Poly(lactide) Composites toward Engineering Plastics with Superior Toughness, Heat Resistance and Anti-hydrolysis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, BG., Yang, WJ., Niu, DY. et al. Stereocomplexed Poly(lactide) Composites toward Engineering Plastics with Superior Toughness, Heat Resistance and Anti-hydrolysis. Chin J Polym Sci 38, 1107–1116 (2020). https://doi.org/10.1007/s10118-020-2443-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2443-5

Keywords

Navigation