Skip to main content

Advertisement

Log in

Synthesis and Properties Investigation of Thiophene-aromatic Polyesters: Potential Alternatives for the 2,5-Furandicarboxylic Acid-based Ones

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

In order to explore new substitutes for 2,5-furandicarboxylic acid (FDCA) or poly(ethylene 2,5-furandicarboxylate) (PEF) and try to develop more ideal bio-based polyesters, several thiophene-aromatic polyesters (PETH, PPTH, PBTH, and PHTH) were synthesized from dimethyl thiophene-2,5-dicarboxylate (DMTD) and different diols, including ethylene glycol, 1,3-propanediol, 1,4-butanediol, and 1,6-hexanediol. The chemical structures of obtained polyesters were confirmed by nuclear magnetic resonance spectroscopy (1H-NMR and 13C-NMR). Determined by GPC measurement, their average molecular weight (Mw) varied from 5.22 × 104 g/mol to 7.94 × 104 g/mol with the molar-mass dispersity of 1.50–2.00. Based on the DSC and TGA results, the synthesized polyesters PETH, PPTH, and PBTH displayed comparable or even better thermal properties when compared with their FDCA-based analogues. From PETH to PHTH, their Tg varied from 64.6 °C to −1 ×C while T5% ranged from 409 °C to 380 °C in nitrogen atmosphere. PETH showed elongation at break as high as 378%, tensile strength of 67 MPa, and tensile modulus of 1800 MPa. Meanwhile, the CO2 and O2 barrier of PETH was 12.0 and 6.6 folds higher than those of PET, respectively, and similar to those of PEF. Considering the overall properties, the synthesized thiophene-aromatic polyesters, especially PETH, showed great potential to be used as an excellent bio-based packaging material in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Berkel, J. G.; Guigo, N.; Kolstad, J. J.; Sipos, L.; Wang, B.; Dam, M. A.; Sbirrazzuoli, N. Isothermal crystallization kinetics of poly(ethylene 2,5-furandicarboxylate). Macromol. Mater. Eng. 2015, 300, 466–474.

    Google Scholar 

  2. Wu, L.; Mincheva, R.; Xu, Y.; Raquez, M. J.; Dubois, P. High molecular weight poly(butylene succinate-co-butylene furandicarboxylate) copolyesters: from catalyzed polycondensation reaction to thermomechanical properties. Biomacromolecules 2012, 13, 2973–2981.

    CAS  PubMed  Google Scholar 

  3. Wu, B.; Xu, Y.; Bu, Z.; Wu, L. B.; Li, B. G.; Dubois, P. Biobased poly(butylene 2,5-furandicarboxylate) and poly(butylene adipate-co-butylene 2,5-furandicarboxylate)s: from synthesis using highly purified 2,5-furandicarboxylic acid to thermomechanical properties. Polymer 2014, 55, 3648–3655.

    CAS  Google Scholar 

  4. Chen, B.; Shen, C.; Chen, S. Ductile PLA modified with methacryloyloxyalkyl isocyanate improves mechanical properties. Polymer 2010, 51, 4667–4672.

    CAS  Google Scholar 

  5. Yoon, W. J.; Oh, K. S.; Koo, J. M.; Kim, J. R.; Lee, K. J.; Im, S. S. Advanced polymerization and properties of biobased high Tg polyester of isosorbide and 1,4-cyclohexanedicarboxylic acid through in situ acetylation. Macromolecules 2013, 46, 2930–2940.

    CAS  Google Scholar 

  6. Jia, Z.; Wang, J.; Sun, L.; Zhu, J.; Liu, X. Fully bio-based polyesters derived from 2,5-furandicarboxylic acid (2,5-FDCA) and dodecanedioic acid (DDCA): from semicrystalline thermoplastic to amorphous elastomer. J. Appl. Polym. Sci. 2018, 46076, 1–11.

    Google Scholar 

  7. Zia, K. M.; Noreen, A.; Zuber, M.; Tabasum, S.; Mujahid, M. Recent developments and future prospects on bio-based polyesters derived from renewable resources: a review. Int. J. Biol. Macromo. 2016, 82, 1028–1040.

    CAS  Google Scholar 

  8. Iwata, T. Cheminform abstract: biodegradable and bio-based polymers: future prospects of eco-friendly plastics. Angew. Chem. Int. Ed. 2015, 54, 3210–3215.

    CAS  Google Scholar 

  9. van Putten, R. J.; van der Waal, J. C.; de Jong, E.; Rasrendra, C. B.; Heeres, H. J.; de Vries, J. G. Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem. Rev. 2013, 113, 1449–1597.

    Google Scholar 

  10. Wang, J. G.; Liu, X. Q.; Zhu, J. From furan to high quality bio-based poly(ethylene furandicarboxylate). Chinese J. Polym. Sci. 2018, 36, 720–727.

    CAS  Google Scholar 

  11. Tsanaktsis, V.; Terzopoulou, Z.; Nerantzak, M.; Papageorgiou, G. Z.; Bikiaris, D. N. New poly(pentylene furanoate) and poly(heptylene furanoate) sustainable polyesters from diols with odd methylene groups. Mater. Lett. 2016, 178, 64–67.

    CAS  Google Scholar 

  12. Wang, J. G.; Liu, X. Q.; Zhang, Y. J.; Liu, F.; Zhu, J. Modification of poly(ethylene 2,5-furandicarboxylate) with 1,4-cyclohexanedimethylene: influence of composition on mechanical and barrier properties. Polymer 2016, 103, 1–8.

    CAS  Google Scholar 

  13. Knoop, R. J. I.; Vogelzang, W.; van Haveren, J. V.; van Es, D. S. High molecular weight poly(ethylene-2,5-furanoate); critical aspects in synthesis and mechanical property determination. J. Polym. Sci., Part A: Polym. Chem. 2013, 21, 4191–4199.

    Google Scholar 

  14. Wang, J. G.; Liu, X. Q.; Jia, Z.; Liu, Y.; Sun, L. Y.; Zhu, J. Copolyesters based on 2,5-furandicarboxylic acid (FDCA): effect of 2,2,4,4-tetramethyl-1,3-cyclobutanediol units on their properties. Polymers 2017, 9, 305–320.

    PubMed Central  Google Scholar 

  15. Martino, L.; Guigo, N.; Berkel, J. G.; Kolstad, J. J.; Sbirrazzuoli, N. Nucleation and self-nucleation of bio-based poly(ethylene 2,5-furandicarboxylate) probed by fast scanning calorimetry. Macromol. Mater. Eng. 2016, 301, 586–596.

    CAS  Google Scholar 

  16. Wang, J. G.; Liu, X. Q.; Jia, Z.; Liu, Y.; Sun, L. Y.; Zhu, J. Synthesis of bio-based poly(ethylene 2,5-furandicarboxylate) copolyesters: higher glass transition temperature, better transparency, and good barrier properties. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 3298–3307.

    CAS  Google Scholar 

  17. Burgess, S. K.; Mikkilineni, D.; Yu, D. B.; Kim, D. J.; Mubarak, C. R.; Kriegel, R. M.; Koros, W. J. Water sorption in poly(ethylene furanoate) compared to poly(ethylene terephthalate). Part 2: kinetic sorption. Polymer 2014, 55, 4748–4756.

    CAS  Google Scholar 

  18. Burgess, S. K.; Kriege, R. M.; Koros, W. J. Carbon dioxide sorption and transport in amorphous poly(ethylene furanoate). Macromolecules 2015, 48, 2184–2193.

    CAS  Google Scholar 

  19. Jiang, M.; Liu, Q.; Zhang, Q.; Ye, C.; Zhou, G. A series of furanaromatic polyesters synthesized via direct esterification method based on renewable resources. J. Polym. Sci., Part A: Polym. Chem. 2012, 50, 1026–1036.

    CAS  Google Scholar 

  20. Vannini, M.; Marchese, P.; Celli, A.; Lorenzetti, C. Fully biobased poly(propylene 2,5-furandicarboxylate) for packaging applications: excellent barrier properties as a function of crystallinity. Green Chem. 2015, 17(8), 4162–4166.

    CAS  Google Scholar 

  21. Guidotti, G.; Soccio, M.; Lotti, N.; Gazzano, M.; Siracusa, V.; Munari, A. Poly(propylene 2,5-thiophenedicarboxylate) versus poly(propylene 2,5-furandicarboxylate): two examples of high gas barrier bio-based polyesters. Polymers 2018, 10, 785.

    PubMed Central  Google Scholar 

  22. Papageorgiou, G. Z.; Papageorgiou, D. G.; Tsanaktsis, V.; Bikiaris, D. N. Synthesis of the bio-based polyester poly(propylene 2,5-furan dicarboxylate) comparison of thermal behavior and solid state structure with its terephthalate and naphthalate homologues. Polymer 2015, 62, 28–38.

    CAS  Google Scholar 

  23. Papageorgiou, G. Z.; Papageorgiou, D. G.; Terzopoulou, Z.; Bikiaris, D. N. Production of bio-based 2,5-furan dicarboxylate polyesters: recent progress and critical aspects in their synthesis and thermal properties. Eur. Polym. J. 2016, 83, 202–229.

    CAS  Google Scholar 

  24. Zhu, J.; Cai, J.; Xie, W.; Chen, P.; Gazzano, M.; Scandola, M.; Gross, R. A. Poly(butylene 2,5-furan dicarboxylate), a biobased alternative to PBT: synthesis, physical properties, and crystal structure. Macromolecules 2013, 46, 796–804.

    CAS  Google Scholar 

  25. Papageorgiou, G. Z.; Tsanaktsis, V.; Papageorgiou, D. G.; Exarhopoulos, S.; Papageorgiou, M.; Bikiaris, D. N. Evaluation of polyesters from renewable resources as alternatives to the current fossil-based polymers phase transitions of poly(butylene 2,5-furan-dicarboxylate). Polymer 2014, 55, 3846–3858.

    CAS  Google Scholar 

  26. Soccio, M.; Martfnez-Tong, D. E.; Alegrfa, A.; Munari, A.; Lotti, N. Molecular dynamics of fully biobased poly(butylene 2,5-furanoate) as revealed by broadband dielectric spectroscopy. Polymer 2017, 128, 24–30.

    CAS  Google Scholar 

  27. Xie, H. Z.; Wu, L. B.; Li, B. G.; Dubois P. Modification of poly(ethylene 2,5-furandicarboxylate) with biobased 1,5-pentanediol: significantly toughened copolyesters retaining high tensile strength and O2 barrier property. Biomccromolcuules 2019, 20, 353–364.

    CAS  Google Scholar 

  28. Zhang, D.; Dumont, M. J. Advances in polymer precursors and bio-based polymers synthesized from 5-hydroxymethylfurfural. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 1478–1492.

    CAS  Google Scholar 

  29. Papageorgiou, G. Z.; Tsanaktsis, V.; Papageorgiou, D. G.; Chrissafis, K.; Exarhopoulos, S.; Bikiaris, D. N. Furan-based polyesters from renewable resources: crystallization and thermal degradation behavior of poly(hexamethylene 2,5-furandicarboxylate). Eur. Polym. J. 2015, 67, 383–396.

    CAS  Google Scholar 

  30. Tsanaktsis, V.; Papageorgiou, G. Z.; Bikiaris, D. N. A facile method to synthesize high-molecular-weight biobased polyesters from 2,5-furandicarboxylic acid and long-chain diols. J. Polym. Sci., Part A: Polym. Chem. 2015, 53, 2617–2632.

    CAS  Google Scholar 

  31. Papageorgiou, G. Z.; Guigo, N.; Tsanaktsis, V.; Papageorgiou, D. G.; Exarhopoulos, S.; Sbirrazzuoli, N.; Bikiaris, D. N. On the bio-based furanic polyesters: synthesis and thermal behavior study of poly(octylene furanoate) using fast and temperature modulated scanning calorimetry. Eur. Polym. J. 2015, 68, 115–127.

    CAS  Google Scholar 

  32. Xie, H. Z.; Wu, L. B.; Li, B. G.; Dubois P. Poly(ethylene 2,5-furandicarboxylate-mb-poly(tetramethylene glycol)) multiblock copolymers: from high tough thermoplastics to elastomers. Polymer 2018, 155, 89–98.

    CAS  Google Scholar 

  33. Guidotti, G.; Genovese, L.; Soccio, M.; Gigli, M.; Munari, A.; Siracusa, V.; Lotti, N. Block copolyesters containing 2,5-furan and trans-1,4-cyclohexane subunits with outstanding gas barrier properties. J. Mol. Sci. 2019, 20, 2187.

    CAS  Google Scholar 

  34. Zhou, W.; Wang, X.; Yang, B.; Xu, Y.; Zhang, W.; Zhang, Y.; Ji, J. Synthesis, physical properties and enzymatic degradation of biobased poly(butylene adipate-co-butylene furandicarboxylate) copolyesters. Polym. Degrad. Stab. 2013, 98, 2177–2183.

    CAS  Google Scholar 

  35. Kim, T.; Koo, J. M.; Ryu, M. H.; Jeon, H.; Kim, S. M.; Park, S. A.; Oh, D. X.; Park, J.; Hwang, S. Y. Sustainable terpolyester of high Tg based on bio heterocyclic monomer of dimethyl furan-2,5-dicarboxylate and isosorbide. Polymer 2017, 132, 122–132.

    CAS  Google Scholar 

  36. Terzopoulou, Z.; Kasmi, N.; Tsanaktsis, V.; Doulakas, N.; Bikiaris, D. N.; Achilias, D. S.; Papageorgiou, G. Z. Synthesis and characterization of bio-based polyesters: poly(2-methyl-1,3-propylene-2,5-furanoate), poly(isosorbide-2,5-furanoate), poly(1,4-cyclohexanedimethylene-2,5-furanoate). Materials 2017, 10, 801.

    PubMed Central  Google Scholar 

  37. Wang, J. G., Liu, X. Q.; Jia, Z.; Sun, L. Y.; Zhang, Y. J.; Zhu, J. Modification of poly(ethylene 2,5-furandicarboxylate) (PEF) with 1,4-cyclohexanedimethylene diol: influence of stereochemistry of 1,4-cyclohexylene units. Polymer 2018, 137, 173–185.

    Google Scholar 

  38. Zhi, W.; Hu, Y.; Liang, M.; Liu, Y.; Li, J.; Yin, J.; Shi, Y. Solid-liquid equilibrium and thermodynamic of 2,5-thiophenedicarboxylic acid in different organic solvents. Fluid Phase Equilibr. 2014, 375, 110–114.

    CAS  Google Scholar 

  39. Sun, L. Y.; Wang, J. G.; Sakil, M.; Jiang, Y. H.; Zhu, J.; Liu, X. Q. New insight into the mechanism for the excellent gas properties of poly(ethylene 2,5-furandicarboxylate) (PEF): role of furan ring’s polarity. Eur. Polym. J. 2019, 118, 642–650.

    CAS  Google Scholar 

  40. Guidotti, G.; Gigli, M.; Soccio, M.; Lott, N.; Salatelli, E.; Gazzano, M.; Siracusa, V.; Munari, A. Tailoring poly(butylene 2,5-thiophenedicarboxylate) features by the introduction of adipic acid co-units: biobased and biodegradable aliphatic/aromatic polyesters. Polymer 2018, 145, 11–20.

    CAS  Google Scholar 

  41. Guidotti, G.; Gigli, M.; Soccio, M.; Lotti, N.; Gazzano, M.; Siracusa, V.; Munari, A. Poly(butylene 2,5-thiophenedicarboxylate): an added value to the class of high gas barrier biopolyesters. Polymers 2018, 10, 167.

    PubMed Central  Google Scholar 

  42. Wang, G. Q.; Jiang, M.; Zhang, Q.; Wang, R.; Liang, Q. D.; Wang, H. H.; Zhou, G. Y. Partially bio-based and tough polyesters, poly(ethylene 2,5-thiophenedicarboxylate-co-1,4-cyclohexane-dimethylene 2,5-thiophenedicarboxylate)s. eXPRESS Polym. Lett. 2019, 13, 938–947.

    CAS  Google Scholar 

  43. Wang, G. Q.; Liang, Y.; Jiang, M.; Zhang, Q.; Wang, R.; Wang, H. H.; Zhou, G. Y. HighTg and tough poly(butylene 2,5-thiophenedicarboxylate-co-1,4-cyclohexanedimethylene 2,5-thiophenedicarboxylate)s: synthesis and characterization. J. Appl. Polym. Sci. 2020, 48634.

    Google Scholar 

  44. Wang, G. Q.; Jiang, M.; Zhang, Q.; Wang, R.; Liang, Q. D.; Zhou, G. Y. New bio-based copolyesters poly(trimethylene 2,5-thiophenedicarboxylate-co-trimethylene terephthalate): synthesis, crystallization behavior, thermal and mechanical properties. Polymer 2019, 173, 27–33.

    CAS  Google Scholar 

  45. Wang, G. Q.; Jiang, M.; Zhang, Q.; Wang, R.; Liang, Q. D.; Zhou, G. Y. New bio-based copolyesters derived from 1,4-butanediol, terephthalic acid and 2,5-thiophenedicarboxylic acid: synthesis, crystallization behavior, thermal and mechanical properties. Polym. Test. 2019, 75, 213–219.

    CAS  Google Scholar 

  46. Wang, G. Q.; Liang, Y.; Jiang, M.; Zhang, Q.; Wang, R.; Wang, H. H.; Zhou, G. Y. Synthesis and characterization of bio-based polyesters from 2,5-thiophenedicarboxylic acid. Polym. Degrad. Stab. 2019, 168, 108942.

    CAS  Google Scholar 

  47. Montaudo, G.; Puglisi, C.; Samperi, F. Primary thermal degradation mechanisms of PET and PBT. Polym. Degrad. Stab. 1993, 42, 13–28.

    CAS  Google Scholar 

  48. Lee, J. S.; Leisen, J.; Choudhury, R. P.; Kriegel, R. M.; Beckham, H. W.; Koros, W. J. Antiplasticization-based enhancement of poly(ethylene terephthalate) barrier properties. Polymer 2012, 53, 213–222.

    CAS  Google Scholar 

  49. Light, R. R.; Seymour, R. W. Effect of sub-Tg relaxations on the gas transport properties of polyesters. Polym. Eng. Sci. 1982, 22, 857–864.

    CAS  Google Scholar 

  50. Kotek, R.; Pang, K.; Schmidt, B.; Tonelli, A. Synthesis and gas barrier characterization of poly(ethylene isophthalate). J. Polym. Sci, Part B: Polym. Phys. 2004, 42, 4247–4254.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 21975270), Zhejiang Provincial Natural Science Foundation of China (No. LR20E030001), Ningbo 2025 Key Scientific Research Programs (No. 2018B10015), National Key Research and Development Program of China (No. 2018YFD0400700), and Research Project of Ningbo Natural Science Foundation (No. 2019A610141).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Qing Liu.

Electronic Supplementary Information

10118_2020_2438_MOESM1_ESM.pdf

Synthesis and Properties Investigation of Thiophene-aromatic Polyesters: Potential Alternatives for the 2,5-Furandicarboxylic Acid-based Ones

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, JG., Zhang, XQ., Shen, A. et al. Synthesis and Properties Investigation of Thiophene-aromatic Polyesters: Potential Alternatives for the 2,5-Furandicarboxylic Acid-based Ones. Chin J Polym Sci 38, 1082–1091 (2020). https://doi.org/10.1007/s10118-020-2438-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2438-2

Keywords

Navigation