Skip to main content
Log in

Time and Temperature Dependence of the Structural Evolution for Polyamide 1012

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The Theological property evolution of polyamide 1012 (PA1012) in the isothermal process in molten state has been investigated. The results show that the viscosity increases and crosslinking reaction occurs simultaneously together with the increase of temperature, thus causing the variation of storage modulus (G′) and loss modulus (G″) in the repeated frequency sweeps with residual time. This research has pointed out that the superposition is valid for monitoring the complex behavior composed of the viscosity increasing and crosslink occurring process by tracing the variation behavior of the crossover points of G’ and G” with time, revealing the same time-temperature dependence of the two reactions in the isothermal process. A normalized master curve has been proposed to describe the melt behavior at a given temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wilzer, J.; Windmann, M.; Weber, S.; Hill, H.; Bennekom, A. V.; Theisen, W. Thermal conductivity of advanced TiC reinforced metal matrix composites for polymer processing applications. J. Compos. Mater.2015, 49, 243–250.

    Article  Google Scholar 

  2. Schaller, R.; Neerincx, P. E.; Meijer, H. E. H. Hierarchical and fractal structuring in polymer processing. Macromol. Mater. Eng.2017, 302, 1600524.

    Article  Google Scholar 

  3. Al-Mezrakchi, R. Y. H. An investigation into scalability production of ultra-fine nanofiber using electrospinning systems. Fibers Polym.2018, 79, 105–115.

    Article  Google Scholar 

  4. Karbownik, I.; Rac, O.; Fiedot, M.; Suchorska-Wozniak, P.; Teterycz, H. In situ preparation of silver-polyacrylonitrile nanocomposite fibres. Eur. Polym. J.2015, 69, 385–395.

    Article  CAS  Google Scholar 

  5. Yang, Y.; Yang, B.; Zhu, S.; Chen, X. Online quality optimization of the injection molding process via digital image processing and model-free optimization. J. Mater. Process. Technol.2015, 226, 85–98.

    Article  Google Scholar 

  6. La, R.; Zhou, Q.; Xia, C.; Mi, D.; Zhang, J. The banded spherulites of iPP induced by pressure vibration injection molding. Chinese J. Polym.Sci.2015, 33, 1625–1632.

    Article  CAS  Google Scholar 

  7. Schafer, C.; Meyer, S. P.; Osswald, T. A. A novel extrusion process for the production of polymer micropellets. Polym. Eng. Sci.2018, 58, 2264–2275.

    Article  Google Scholar 

  8. Huang, Z.; Luo, P.; Tong, J.; Su, F. Velocity distribution of extensional flow fields in an eccentric cylinder of an extensional extruder. J. Macromol. Sci., Part B: Phys.2018, 57, 732–745.

    Article  CAS  Google Scholar 

  9. Ji, Z.; Zhang, X.; Yan, C.; Jia, X.; Xia, Y.; Wang, X.; Zhou, F. 3D printing of photocuring elastomers with excellent mechanical strength and resilience. Macromol. Rapid Commun.2019, 40, 1800873.

    Article  Google Scholar 

  10. Li, X.; Yu, R.; He, Y.; Zhang, Y.; Yang, X.; Zhao, X.; Huang, W. Self-healing polyurethane elastomers based on a disulfide bond by digital light processing 3D printing. ACS Macro Lett.2019, 8, 1511–1516.

    Article  CAS  Google Scholar 

  11. Shangguan, Y.; Zhang, C.; Xie, Y.; Chen, R.; Jin, L.; Zheng, Q. Study on degradation and crosslinking of impact polypropylene copolymer by dynamic rheological measurement. Polymer2010, 51, 500–506.

    Article  CAS  Google Scholar 

  12. Cuadri, A. A.; Martfn- Alfonso, J. E. The effect of thermal and thermo-oxidative degradation conditions on rheological, chemical and thermal properties of HDPE. Polym. Degrad. Stab.2017, 147, 11–18.

    Article  Google Scholar 

  13. Kruse, M.; Wagner, M. H. Time-resolved rheometry of polyfethylene terephthalate) during thermal and thermo-oxidative degradation. Rheol. Acta2016, 55, 789–800.

    Article  CAS  Google Scholar 

  14. Filippone, G.; Carroccio, S. C.; Mendichi, R.; Gioiella, L.; Dintcheva, N. T.; Gambarotti, C. Time-resolved rheology as a tool to monitor the progress of polymer degradation in the melt state. Part I: thermal and thermo-oxidative degradation of polyamide 11. Polymer2015, 72, 134–141.

    Article  CAS  Google Scholar 

  15. Salehiyan, R.; Bandyopadhyay. J.; Ray. S. Mechanism of thermal degradation-induced gel formation in polyamide 6/ethylene vinyl alcohol blend nanocomposites studied by time-resolved rheology and hyphenated thermogravimetric analyzer Fourier transform infrared spectroscopy mass spectroscopy: synergistic role of nanoparticles and maleic anhydride-grafted polypropylene. ACS Omega2019, 4, 9569–9582.

    Article  CAS  Google Scholar 

  16. Dong, S.; Zhu, P.; Liu, J.; Wang, D.; Dong, X. Thermal treatment effects on the microstructure and tensile properties of transparent polyamides. Acta Polymerica Sinica (in Chinese) 2019, 50, 189–198.

    Google Scholar 

  17. Wang, L.; Dong, X.; Huang, M.; Muller, A. J.; Wang, D. Self-associated polyamide alloys with tailored polymorphism transition and lamellar thickening for advanced mechanical application., ACS, Appl.Mafer. Inferfaces2017, 9, 19238–19247.

    Article  CAS  Google Scholar 

  18. Gao, Y.; Dong, X.; Wang, L.; Liu, G.; Liu, X.; Tuinea-Bobe, C.; Whiteside, B.; Coates, P.; Wang, D.; Han, C. C. Flow-induced crystallization of long chain aliphatic polyamides under a complex flow field: inverted anisotropic structure and formation mechanism. Polymer2015, 73, 91–101.

    Article  CAS  Google Scholar 

  19. Suchocki, C.; Molak, R. Rheological properties of polyamide: experimental studies and constitutive modeling. Chinese J. Polym. Sci.2019, 37, 178–188.

    Article  CAS  Google Scholar 

  20. Hoffmann, B.; Kressler, J.; Stoppelmann, G.; Friedrich, C.; Kim, G. -M. Rheology of nanocomposites based on layered silicates and polyamide-12. Colloid. Polym. Sci.2000, 278, 629–636.

    Article  CAS  Google Scholar 

  21. Okamba-Diogo, O.; Richaud, E.; Verdu, J.; Fernagut, F.; Guilment, J.; Fayolle, B. Molecular and macromolecular structure changes in polyamide 11 during thermal oxidation. Polym. Degrad. Stab.2014, 108, 123–132.

    Article  CAS  Google Scholar 

  22. Chen, Y.; Wei, W.; Himmel, T.; Wagner, M. H. Structure and rheological behavior of thermoreversible supramolecular polymers with weak multiple hydrogen bonds. Macromol. Mater. Eng.2013, 298, 876–887.

    Article  CAS  Google Scholar 

  23. Schuttenberg, H.; Schulz, R. C. Trifluoroacetylation of amines with N-trifluoroacetyl-nylon 66. Angew. Chem. Int. Ed.1976, 75, 777–778.

    Article  Google Scholar 

  24. Ibar, J. P.; Zhang, Z.; Li, Z. M.; Santamaria, A. Investigation of the dynamic rheological properties of a polycarbonate melt presenting solid-like characteristics and a departure from pure liquid newtonian behavior at long relaxation times. J. Macromol. Sci., Part B: Phys.2015, 54, 649–710.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Key R&D Program of China (No. 2017YFB0307600) and the National Natural Science Foundation of China (No. 21574140).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia Dong.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, XR., Wang, Y., Liu, LY. et al. Time and Temperature Dependence of the Structural Evolution for Polyamide 1012. Chin J Polym Sci 38, 993–998 (2020). https://doi.org/10.1007/s10118-020-2434-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2434-6

Keywords

Navigation