Skip to main content
Log in

Enhancement of β-Phase Crystal Content of Poly(vinylidene fluoride) Nanofiber Web by Graphene and Electrospinning Parameters

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Electrospun poly(vinylidene fluoride) (PVDF) nanofiber web has been widely utilized as a functional material in various flexible sensors and generators due to its high piezoelectricity, ease processability, and low cost. Among all the crystalline phases of PVDF, β-phase is a key property for PVDF nanofiber web, because the content of β-phase is directly proportional to piezoelectric performance of PVDF nanofiber web. Herein, the impact of graphene content (GC), tip-to-collector distance (TCD), and rotational speed of collector (RSC), as well as their interactions on the β-phase formation of PVDF nanofiber web is systematically investigated via design of experimental method. The fraction of each crystalline phase of PVDF nanofiber web is calculated by FTIR spectra, and the crystallinity is determined by XRD patterns. The influences of GC, TCD, and RSC on both β-phase fraction and crystallinity of PVDF nanofiber are analyzed using Minitab program. The results show that GC, TCD, and RSC all have significant effect on the β-phase content of PVDF nanofiber web, and GC is the most significant one. In addition, an optimal electrospinning condition (GC = 1 wt%, TCD = 4 cm, and RSC = 2000 r-min−1) to fabricate high β-phase crystallinity of PVDF nanofiber web is drawn, under which the crystallinity can reach 41.7%. The contributions in this study could provide guidance for future research on fabricating high performance PVDF nanofiber web based sensors or generators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Li, Z.; Zhu, M.; Shen, J.; Qiu, Q.; Yu, J.; Ding, B. All-fiber structured electronic skin with high elasticity and breathability. Adv. Funct. Mater.2020, 30, 1–9.

    Google Scholar 

  2. Li, Z.; Shen, J.; Abdalla, I.; Yu, J.; Ding, B. Nanofibrous membrane constructed wearable triboelectric nanogenerator for high performance biomechanical energy harvesting. Nano Energy2017, 36, 341–348.

    Article  CAS  Google Scholar 

  3. Zhu, M.; Lou, M.; Abdalla, I.; Yu, J.; Li, Z.; Ding, B. Highly shape adaptive fiber based electronic skin for sensitive joint motion monitoring and tactile sensing. Nano Energy2020, 69, 104429.

    Article  CAS  Google Scholar 

  4. Fuh, Y. K.; Wang, B. S.; Tsai, C. Y. Self-powered pressure sensor with fully encapsulated 3D printed wavy substrate and highly-aligned piezoelectric fibers array. Sci. Rep.2017, 7, 1–7.

    Article  CAS  Google Scholar 

  5. Lou, M.; Abdalla, I.; Zhu, M.; Yu, J.; Li, Z.; Ding, B. Hierarchically rough structured and self-powered pressure sensor textile for motion sensing and pulse monitoring. ACS Appl. Mater. Interfaces2020, 12, 1597–1605.

    Article  CAS  Google Scholar 

  6. Maity, K.; Mandal, D. All-organic high-performance piezoelectric nanogenerator with multilayer assembled electrospun nanofiber mats for self-powered multifunctional sensors. ACS Appl. Mater. Interfaces2018, 10, 18257–18269.

    Article  CAS  Google Scholar 

  7. Huang, L.; Lu, C.; Wang, F.; Wang, L. Preparation of PVDF/graphene ferroelectric composite films by in situ reduction with hydrobromic acids and their properties. RSC Adv.2014, 4, 45220–45229.

    Article  CAS  Google Scholar 

  8. Hu, Z.; Tian, M.; Nysten, B.; Jonas, A. M. Regular arrays of highly ordered ferroelectric polymer nanostructures for non-volatile low-voltage memories. Nat. Mater.2009, 8, 62–67.

    Article  CAS  Google Scholar 

  9. Adhikary, P.; Biswas, A.; Mandal, D. Improved sensitivity of wearable nanogenerators made of electrospun Eu3+ doped P (VDF-HFP)/graphene composite nano fibers for self-powered voice recognition. Nanotechnology2016, 27, 495501.

    Article  Google Scholar 

  10. Bae, J. H.; Chang, S. H. PVDF-based ferroelectric polymers and dielectric elastomers for sensor and actuator applications: a review. Funct. Compos. Struct.2019, 1, 012003.

    Article  Google Scholar 

  11. Fortunato, M.; Cavallini, D.; De Bellis, G.; Marra, F.; Tamburrano, A.; Sarto, F.; Sarto, M. S. Phase inversion in PVDF films with enhanced piezoresponse through spin-coating and quenching. Polymers (Basel).2019, 11, 1–15.

    Google Scholar 

  12. Mandal, D.; Yoon, S.; Kim, K. J. Origin of piezoelectricity in an electrospun poly(vinylidene fluoride-trifluoroethylene) nanofiber web-based nanogenerator and nano-pressure sensor. Macromol. Rapid Commun.2011, 32, 831–837.

    Article  CAS  Google Scholar 

  13. Zhu, H.; Mitsuishi, M.; Miyashita, T. Facile preparation of highly oriented poly(vinylidene fluoride) Langmuir-Blodgett nanofilms assisted by amphiphilic polymer nanosheets. Macromolecules2012, 45, 9076–9084.

    Article  CAS  Google Scholar 

  14. Mandal, D.; Henkel, K.; Schmeisser, D. Improved performance of a polymer nanogenerator based on silver nanoparticles doped electrospun P(VDF-HFP) nanofibers. Phys. Chem. Chem. Phys.2011, 16, 10403.

    Article  Google Scholar 

  15. Garain, S.; Jana, S.; Sinha, T. K.; Mandal, D. Design of in situ poled Ce3+-doped electrospun PVDF/graphene composite nanofibers for fabrication of nanopressure sensor and ultrasensitive acoustic nanogenerator. ACS Appl. Mater. Interfaces2016, 8, 4532–4540.

    Article  CAS  Google Scholar 

  16. Mi, C.; Ren, Z.; Li, H.; Yan, S.; Sun, X. Synergistic effect of hydrogen bonds and diffusion on the β-crystallization of poly(vinylidene fluoride) on poly(methyl methacrylate) interface. Ind. Eng. Chem. Res.2019, 58, 7389–7396.

    Article  CAS  Google Scholar 

  17. Lee, S. J.; Prabu, A. A.; Jin, K. Piezoelectric properties of electrospun poly(L-lactic acid) nanofiber web. Mater. Lett.2015, 148, 58–62.

    Article  CAS  Google Scholar 

  18. Ding, B.; Wang, M.; Wang, X.; Yu, J.; Sun, G. Electrospun nanomaterials for ultrasensitive sensors. Mater. Today2010, 13, 16–27.

    Article  CAS  Google Scholar 

  19. Nasir, M.; Kotaki, M. Fabrication of aligned piezoelectric nanofiber by electrospinning. Int. J. Nanosci.2009, 08, 231–235.

    Article  CAS  Google Scholar 

  20. Jin, L.; Zheng, Y.; Liu, Z.; Li, J.; Zhai, H.; Chen, Z.; Li, Y. Design of an ultrasensitive glexible bend sensor using a silver-doped oriented poly(vinylidene fluoride) nanofiber web for respiratory monitoring. ACS Appl. Mater. Interfaces2020, 12, 1359–1367.

    Article  CAS  Google Scholar 

  21. Xin, Y.; Qi, X.; Tian, H.; Guo, C.; Li, X.; Lin, J.; Wang, C. Full-fiber piezoelectric sensor by straight PVDF/nanoclay nanofibers. Mater. Lett.2016, 164, 136–139.

    Article  CAS  Google Scholar 

  22. Abbasipour, M.; Khajavi, R.; Yousefi, A. A.; Yazdanshenas, M. E.; Razaghian, F. The piezoelectric response of electrospun PVDF nanofibers with graphene oxide, graphene, and halloysite nanofillers: a comparative study. J. Mater. Sci. Mater. Electron.2017, 28, 15942–15952.

    Article  CAS  Google Scholar 

  23. Yadav, S. K.; Cho, J. W. Functionalized graphene nanoplatelets for enhanced mechanical and thermal properties of polyurethane nanocomposites. Appl. Surf. Sci.2013, 266, 360–367.

    Article  CAS  Google Scholar 

  24. Tong, W.; Zhang, Y.; Yu, L.; Luan, X.; An, Q.; Zhang, Q.; Lv, F.; Chu, P. K.; Shen, B.; Zhang, Z. Novel method for the fabrication of flexible film with oriented arrays of graphene in poly(vinylidene fluoride-co-hexafluoropropylene) with low dielectric loss. J. Phys. Chem. C2014, 118, 10567–10573.

    Article  CAS  Google Scholar 

  25. Huang, F. L.; Wei, Q. F.; Wang, J. X.; Cai, Y. B.; Huang, Y. B. Effect of temperature on structure, morphology and crystallinity of PVDF nanofibers via electrospinning. E-Polymers2008, 152, 1–8.

    Google Scholar 

  26. Alamusi; Xue, J.; Wu, L.; Hu, N.; Qiu, J.; Chang, C.; Atobe, S.; Fukunaga, H.; Watanabe, T.; Liu, Y.; Ning, H.; Li, J.; Zhao, Y. Evaluation of piezoelectric property of reduced graphene oxide (rGO)-poly(vinylidene fluoride) nanocomposites. Nanoscale2012, 4, 7250.

    Article  CAS  Google Scholar 

  27. Abolhasani, M. M.; Shirvanimoghaddam, K.; Naebe, M. PVDF/graphene composite nanofibers with enhanced piezoelectric performance for development of robust nanogenerators. Compos. Sci. Technol.2017, 138, 49–56.

    Article  CAS  Google Scholar 

  28. Martins, P.; Lopes, A. C.; Lanceros-Mendez, S. Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog. Polym. Sci.2014, 39, 683–706.

    Article  CAS  Google Scholar 

  29. Cai, X.; Lei, T.; Sun, D.; Lin, L. A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR. RSC Adv.2017, 7, 15382–15389.

    Article  CAS  Google Scholar 

  30. Hu, J.; Zhu, Y.; Zhang, H.; Gu, Y.; Yang, X. Mixed effect of main electrospinning parameters on the γ-phase crystallinity of electrospun PVDF nanofibers. Smart Mater. Struct.2017, 26, 085019.

    Article  Google Scholar 

  31. Ragab, D. M.; Elgindy, N. A. Recent advances in nanofibers fabrication and their potential applications in wound healing and regenerative medicine. Adv. Mater. Lett.2018, 9, 665–676.

    Article  CAS  Google Scholar 

  32. Ghosh, S. K.; Mandal, D. Synergistically enhanced piezoelectric output in highly aligned 1D polymer nanofibers integrated all-fiber nanogenerator for wearable nano-tactile sensor. Nano Energy2018, 53, 245–257.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by The Cotton Textiles Research Trust with the project “Protective Efficiency of Respiratory Protective Equipment against Byssinosis for Cotton Workers” and The University of Manchester through project AA14512 (UMRI project “Graphene-Smart Textiles E-Healthcare Network”). L.J. and Z.L. were funded by the China Scholarship Council (CSC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, L., Zheng, Y., Liu, ZK. et al. Enhancement of β-Phase Crystal Content of Poly(vinylidene fluoride) Nanofiber Web by Graphene and Electrospinning Parameters. Chin J Polym Sci 38, 1239–1247 (2020). https://doi.org/10.1007/s10118-020-2428-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2428-4

Keywords

Navigation