Skip to main content
Log in

Accelerated Aging Behaviors and Mechanism of Fluoroelastomer in Lubricating Oil Medium

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The aging behaviors and mechanism of fluoroelastomer (FKM) under lubricating oil (FKM-O) and air (FKM-A, as a comparison) at elevated temperatures were studied from both physical and chemical viewpoints. The obvious changes of mechanical and swelling performances indicate that the coupling effect of lubricating oil and temperature causes more serious deterioration of FKM-O compared to that of FKM-A. Meanwhile, much stronger temperature dependence of both bulk properties and micro-structures for FKM-O is found. Three-stage physical diffusion process is defined in FKM-O due to the competition between oil diffusion and elastic retraction of network. FTIR results reveal that the dehydrofluorination reaction causes the fracture of C-F bonds and produces a large number of C-C bonds in the backbone. The coupling effect of oil medium and high temperature could accelerate the scission of C-C bonds and generate a series of fragments with different molecular sizes. The TGA results, crosslinking density Ve, and glass transition temperature Tg derived from different measurements coherently demonstrate the network destruction in the initial stage and the simultaneous reconstruction occurring at the final stage. The newly formed local network induced by reconstruction cannot compensate the break of the original rubber network and thus only provides lower tensile strength and thermal stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ameduri, B.; Boutevin, B.; Kostov, G. Fluoroelastomers: synthesis, properties and applications. Prog. Polym. Sci.2001, 26, 105–187.

    Article  CAS  Google Scholar 

  • Li, D. H.; Liao, M. Y. Dehydrofluorination mechanism, structure and thermal stability of pure fluoroelastomer (poly(VDF-ter-HFP-ter-TFE) terpolymer) in alkaline environment. J. Fluorine. Chem. 2017, 201, 55–67.

    Article  CAS  Google Scholar 

  • Wang, Y.; Bai, Y. P. The functionalization of fluoroelastomers: approaches, properties and applications. RSC Adv. 2016, 6, 53730–53748.

    Article  CAS  Google Scholar 

  • Moore, A. L. Fluoroelastomers handbook. Norwish, William Andrew Publishing, 2006.

    Google Scholar 

  • Mofidi, M.; Kassfeldt, E.; Prakash, B. Tribological behaviour of an elastomer aged in different oils. Tri. Int.2008, 41, 860–866.

    Article  CAS  Google Scholar 

  • Lou, W. T.; Zhang, W. F.; Jin, T. Z.; Liu, X. R.; Dai, W. Synergistic effects of multiple environmental factors on degradation of hydrogenated nitrile rubber seals. Polymers2018, 10, 897.

    Article  Google Scholar 

  • Xia, L. C.; Wang, M.; Wu, H.; Guo, S. Y. Effects of cure system and filler on chemical aging behavior of fluoroelastomer in simulated proton exchange membrane fuel cell environment. Int. J. Hydrogen. Energy2016, 41, 2887–2895.

    Article  CAS  Google Scholar 

  • Maiti, M.; Mitra, S.; Bhowmick, A. K. Effect of nanoclays on high and low temperature degradation of fluoroelastomers. Polym. Degrad. Stab.2008, 93, 188–200.

    Article  CAS  Google Scholar 

  • Choi, S. S.; Jose, J.; Lyu, M. Y.; Huh, Y. I.; Cho, B. H.; Nah, C. Influence of filler and cure systems on thermal aging resistance of natural rubber vulcanizates under strained condition. J. Appl. Polym. Sci.2010, 118, 3074–3081.

    Article  CAS  Google Scholar 

  • Mitra, S.; Ghanbari-Siahkali, A.; Kingshott, P.; Almdal, K.; Rehmeier, H. K.; Christensen, A. G. Chemical degradation of fluoroelastomer in an alkaline environment. Polym. Degrad. Stab.2003, 83, 195–206.

    Article  Google Scholar 

  • Mitra, S.; Ghanbari-Siahkali, A.; Kingshott, P.; Hvilsted, S.; Almdal, K. Chemical degradation of an uncrosslinked pure fluororubber in an alkaline environment. J. Polym. Sci., Part A: Polym. Chem.2004, 42, 6216–6229.

    Article  CAS  Google Scholar 

  • Akhlaghi, S.; Pourrahimi, A. M.; Sjostedt, C.; Bellander, M.; Hedenqvist, M. S.; Gedde, U. W. Degradation of fluoroelastomers in rapeseed biodiesel at different oxygen concentrations. Polym. Degrad. Stab.2017, 136, 10–19.

    Article  CAS  Google Scholar 

  • Akhlaghi, S.; Gedde, U. W.; Hedenqvist, M. S.; Conde Brana, M. T.; Bellander, M. Deterioration of automotive rubbers in liquid biofuels: a review. Renew. Sustain. Energy Rev.2015, 43, 1238–1248.

    Article  CAS  Google Scholar 

  • Sugama, T. Surface analyses of fluoroelastomer bearings exposed to geothermal environments. Mater. Lett.2001, 50, 66–72.

    Article  CAS  Google Scholar 

  • Lin, C. W.; Chien, C. H.; Tan, J. Z.; Chao, Y. J.; van Zee, J. W. Chemical degradation of five elastomeric seal materials in a simulated and an accelerated PEM fuel cell environment. J. Power Sources2011, 196, 1955–1966.

    Article  CAS  Google Scholar 

  • Sugama, T.; Pyatina, T.; Redline, E.; McElhanon, J.; Blankenship, D. Degradation of different elastomeric polymers in simulated geothermal environments at 300 °C. Polym. Degrad. Stab. 2015, 120, 328–339.

    Article  CAS  Google Scholar 

  • Heidarian, J. Aging of carbon nanotube-filled fluoroelastomer in oil-based drilling fluid. Polimery2018, 63, 191–212.

    Article  CAS  Google Scholar 

  • Liu, X.; Zhao, J. H.; Yang, R.; Iervolino, R.; Barbera, S. Effect of lubricating oil on thermal aging of nitrile rubber. Polym. Degrad. Stab.2018, 151, 136–143.

    Article  CAS  Google Scholar 

  • Liu, X.; Zhao, J. H.; Liu, Y.; Yang, R. Volatile components changes during thermal aging of nitrile rubber by flash evaporation of Py-GC/MS. J. Anal. Appl. Pyrolysis.2015, 113, 193–201.

    Article  CAS  Google Scholar 

  • Yu, Z. H.; Herndon, S. C.; Ziemba, L. D.; Timko, M. T.; Liscinsky, D. S.; Anderson, B. E.; Miake-Lye, R. C. Identification of lubrication oil in the particulate matter emissions from engine exhaust of inservice commercial aircraft. Environ. Sci. Technol.2012, 46, 9630–9637.

    Article  CAS  Google Scholar 

  • Schmiegel, W. W.; Logothetis, A. L. Curing of vinylidene fluoride based fluoroelastomers. ACS Symp. Ser.1984, 260, 159–182.

    Article  CAS  Google Scholar 

  • Rooj, S.; Das, A.; Heinrich, G. Tube-like natural halloysite/fluoroe-lastomer nanocomposites with simultaneous enhanced mechanical, dynamic mechanical and thermal properties. Eur. Polym. J.2011, 47, 1746–1755.

    Article  CAS  Google Scholar 

  • Haroonabadi, L.; Dashti, A.; Najipour, M. Investigation of the effect of thermal aging on rapid gas decompression (RGD) resistance of nitrile rubber. Polym. Test.2018, 67, 37–45.

    Article  CAS  Google Scholar 

  • Niu, Y. H.; Liang, W. B.; Zhang, Y. L.; Chen, X. L.; Lai, S. Y.; Li, G. X.; Wang, D. J. Crosslinking kinetics of polyethylene with small amount of peroxide and its influence on the subsequent crystallization behaviors. Chinese J. Polym. Sci.2016, 34, 1117–1128.

    Article  CAS  Google Scholar 

  • Banik, I.; Bhowmick, A. K.; Raghavan, S. V.; Majali, A. B.; Tikku, V. K. Thermal degradation studies of electron beam cured terpolymeric fluorocarbon rubber. Polym. Degrad. Stab.1999, 63, 413–421.

    Article  CAS  Google Scholar 

  • Kader, M. A.; Bhowmick, A. K. Thermal ageing, degradation and swelling of acrylate rubber, fluororubber and their blends containing polyfunctional acrylates. Polym. Degrad. Stab. 2003, 79, 283–295.

    Article  CAS  Google Scholar 

  • Luo, Y. F.; Zou, J.; Li, J.; Zou, H. W.; Liang, M. Effect of crosslinking agent on properties and morphology of water-blown semirigid polyurethane foam. J. Appl. Polym. Sci.2018, 135, 46753.

    Article  Google Scholar 

  • Kadlcak, J.; Kuritka, I.; Tunnicliffe, L. B.; Cermak, R. Rapid Payne effect test—a novel method for study of strain-softening behavior of rubbers filled with various carbon blacks. J. Appl. Polym. Sci.2015, 132, 41976.

    Article  Google Scholar 

  • Barjasteh, E.; Kar, N.; Nutt, S. R. Effect of filler on thermal aging of composites for next-generation power lines. Compos. Part. A-Appl. S.2011, 42, 1873–1882.

    Article  Google Scholar 

  • Bandzierz, K.; Reuvekamp, L.; Dryzek, J.; Dierkes, W.; Blume, A.; Bielinski, D. Influence of network structure on glass transition temperature of elastomers. Materials2016, 9, 607.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Joint Foundation from Ministry of Education and Advanced Research of Equipment (No. 6141A02022201), the National Natural Science Foundation of China (Nos. U19A2096 and 51721091), and Department of Science and Technology of Sichuan Province (No. 2019YFH0027).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan-Hua Niu or Guang-Xian Li.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, QL., Pei, JK., Li, G. et al. Accelerated Aging Behaviors and Mechanism of Fluoroelastomer in Lubricating Oil Medium. Chin J Polym Sci 38, 853–866 (2020). https://doi.org/10.1007/s10118-020-2410-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2410-1

Keywords

Navigation