Skip to main content
Log in

Differences in Crystallization Behaviors between Cyclic and Linear Polymer Nanocomposites

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Cyclic polymers exhibit fascinating crystallization behaviors owing to the absence of chain ends and more compact conformations. In the current simulation, dynamic Monte Carlo simulations were performed to reveal the underlying mechanism of the effect of chain topology and chain length on crystallization of polymer in solutions containing one-dimensional nanofiller. Simulation results suggested that the filled cyclic polymers exhibit higher melting temperature, higher crystallization temperature, and faster crystallization rate than the analogous linear polymers of identical chain length, especially in the systems with relatively short chains. Based on the Thomson-Gibbs equation, we theoretically analyzed the difference in the melting point between the cyclic and linear polymers under different chain lengths, and derived the dependence of the ratio of the melting point of the linear polymers to that of its cyclic analogs on chain length. In addition, it was also observed that the nanofiller can induce the formation of nanohybrid shish-kebab structure during isothermal crystallization of all systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auriemma, F.; Alfonso, G. C.; Rosa, C. D. Polymer crystallization I: from chain microstructure to processing. Springer, 2016.

    Google Scholar 

  2. Shin, E. J.; Jeong, W.; Brown, H. A.; Koo, B. J.; Hedrick, J. L.; Waymouth, R. M. Crystallization of cyclic polymers: synthesis and crystallization behavior of high molecular weight cyclic poly(ε- caprolactone)s. Macromolecules2011, 44, 2773–2779.

    CAS  Google Scholar 

  3. Su, H. H.; Chen, H. L.; Díaz, A.; Casas, M. T.; Puiggalí, J.; Hoskins, J. N.; Grayson, S. M.; Pérez, R. A.; Müller, A. J. New insights on the crystallization and melting of cyclic PCL chains on the basis of a modified Thomson-Gibbs equation. Polymer2013, 54, 846–859.

    CAS  Google Scholar 

  4. Lee, C. U.; Li, A.; Ghale, K.; Zhang, D. Crystallization and melting behaviors of cyclic and linear polypeptoids with alkyl side chains. Macromolecules2013, 46, 8213–8223.

    CAS  Google Scholar 

  5. López, J. V.; Pérez-Camargo, R. A.; Zhang, B.; Grayson, S. M.; Müller, A. J. The influence of small amounts of linear polycaprolactone chains on the crystallization of cyclic analogue molecules. RSC Adv.2016, 6, 48049–48063.

    Google Scholar 

  6. Takeshita, H.; Poovarodom, M.; Kiya, T.; Arai, F.; Takenaka, K.; Miya, M.; Shiomi, T. Crystallization behavior and chain folding manner of cyclic, star and linear poly(tetrahydrofuran)s. Polymer2012, 53, 5375–5384.

    CAS  Google Scholar 

  7. Wang, J.; Li, Z.; Pérez, R. A.; Müller, A. J.; Zhang, B.; Grayson, S. M.; Hu, W. Comparing crystallization rates between linear and cyclic poly(ε-caprolactones) via fast-scan chip-calorimeter measurements. Polymer2015, 63, 34–40.

    CAS  Google Scholar 

  8. Hagita, K.; Fujiwara, S.; Iwaoka, N. An accelerated united-atom molecular dynamics simulation on the fast crystallization of ring polyethylene melts. J. Chem. Phys.2019, 150, 074901.

    PubMed  Google Scholar 

  9. Zhang, H.; Lv, T.; Li, J.; Liu, B.; Jiang, S. Pendant affected crystallization behaviors of cyclic poly(ε-caprolactone). Cryst. Growth Des.2018, 19, 49–54.

    Google Scholar 

  10. Pérez, R. A.; Córdova, M. E.; López, J. V.; Hoskins, J. N.; Zhang, B.; Grayson, S. M.; Müller, A. J. Nucleation, crystallization, selfnucleation and thermal fractionation of cyclic and linear poly(ε- caprolactone)s. React. Funct. Polym.2014, 80, 71–82.

    Google Scholar 

  11. Zardalidis, G.; Mars, J.; Allgaier, J.; Mezger, M.; Richter, D.; Floudas, G. Influence of chain topology on polymer crystallization: poly(ethylene oxide) (PEO) rings vs. linear chains. Soft Matter2016, 12, 124–8134.

    Google Scholar 

  12. Xiao, H.; Luo, C.; Yan, D.; Sommer, J. U. Molecular dynamics simulation of crystallization cyclic polymer melts as compared to their linear counterparts. Macromolecules2017, 50, 9796–9806.

    CAS  Google Scholar 

  13. Tezuka, Y.; Ohtsuka, T.; Adachi, K.; Komiya, R.; Ohno, N.; Okui, N. A defect-free ring polymer: size-controlled cyclic poly(tetrahydrofuran) consisting exclusively of the monomer unit. Macromol. Rapid Commun.2008, 29, 1237–1241.

    CAS  Google Scholar 

  14. Shin, E. J.; Jones, A. E.; Waymouth, R. M. Stereocomplexation in cyclic and linear polylactide blends. Macromolecules2011, 45, 595–598.

    Google Scholar 

  15. Sugai, N.; Asai, S.; Tezuka, Y.; Yamamoto, T. Photoinduced topological transformation of cyclized polylactides for switching the properties of homocrystals and stereocomplexes. Polym. Chem.2015, 6, 3591–3600.

    CAS  Google Scholar 

  16. Iyer, K.; Muthukumar, M. Langevin dynamics simulation of crystallization of ring polymers. J. Chem. Phys.2018, 148, 244904.

    PubMed  Google Scholar 

  17. Córdova, M. E.; Lorenzo, A. T.; Müller, A. J.; Hoskins, J. N.; Grayson, S. M. A comparative study on the crystallization behavior of analogous linear and cyclic poly(ε-caprolactones). Macromolecules2011, 44, 1742–1746.

    Google Scholar 

  18. Samsudin, S. A.; Kukureka, S. N.; Jenkins, M. J. Crystallisation kinetics of cyclic and linear poly(butylene terephthalate). J. Therm. Anal. Calorim.2017, 128, 457–463.

    CAS  Google Scholar 

  19. Lee, K. S.; Wegner, G.; Hsu, S. L. Vibrational spectroscopic studies of linear and cyclic alkanes: CnH2n+2, CnH2n with 24 ≤ n ≤ 288: chain folding, chain packing and conformations. Polymer1987, 28, 889–896.

    CAS  Google Scholar 

  20. Coleman, J. N.; Khan, U.; Gun’ko, Y. K. Mechanical reinforcement of polymers using carbon nanotubes. Adv. Mater.2006, 18, 689–706.

    CAS  Google Scholar 

  21. Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science2008, 321, 385–388.

    CAS  PubMed  Google Scholar 

  22. Nie, Y. J.; Huang, G. S.; Qu, L. L.; Wang, X. A.; Weng, G. S.; Wu, J. R. New insights into thermodynamic description of strain-induced crystallization of peroxide cross-linked natural rubber filled with clay by tube model. Polymer2011, 52, 3234–3242.

    CAS  Google Scholar 

  23. Li, L.; Li, C. Y.; Ni, C. Polymer crystallization-driven, periodic patterning on carbon nanotubes. J. Am. Chem. Soc.2006, 128, 1692–1699.

    CAS  PubMed  Google Scholar 

  24. Li, L.; Li, B.; Hood, M. A.; Li, C. Y. Carbon nanotube induced polymer crystallization: the formation of nanohybrid shishkebabs. Polymer2009, 50, 953–965.

    CAS  Google Scholar 

  25. Li, C. Y.; Li, L.; Cai, W.; Kodjie, S. L.; Tenneti, K. K. Nanohybrid shishkebabs: periodically functionalized carbon nanotubes. Adv. Mater.2005, 17, 1198–1202.

    CAS  Google Scholar 

  26. Ning, N.; Fu, S.; Zhang, W.; Chen, F.; Wang, K.; Deng, H.; Zhang, Q.; Fu, Q. Realizing the enhancement of interfacial interaction in semicrystalline polymer/filler composites via interfacial crystallization. Prog. Polym. Sci.2012, 37, 1425–1455.

    CAS  Google Scholar 

  27. Nie, Y.; Hao, T.; Wei, Y.; Zhou, Z. Polymer crystal nucleation with confinement-enhanced orientation dominating the formation of nanohybrid shish-kebabs with multiple shish. RSC Adv.2016, 6, 50451–50459.

    CAS  Google Scholar 

  28. Gu, Z.; Xu, Y.; Lu, Q.; Han, C.; Liu, R.; Zhou, Z.; Hao, T.; Nie, Y. Stereocomplex formation in mixed polymers filled with twodimensional nanofillers. Phys. Chem. Chem. Phys.2019, 21, 6443–6452.

    CAS  PubMed  Google Scholar 

  29. Liu, R.; Zhou, Z.; Liu, Y.; Liang, Z.; Ming, Y.; Nie, Y.; Hao, T. Competition between interfacial interaction and microphase separation in crystallization of filled block copolymers. J. Polym. Sci., Part B: Polym. Phys.2019.

    Google Scholar 

  30. Nie, Y.; Zhang, R.; Zheng, K.; Zhou, Z. Nucleation details of nanohybrid shish-kebabs in polymer solutions studied by molecular simulations. Polymer2015, 7636, 1–7.

    Google Scholar 

  31. Liu, R.; Yang, L.; Qiu, X.; Wu, H.; Zhang, Y.; Liu, Y.; Zhou, Z.; Ming, Y.; Hao, T.; Nie, Y. One-dimensional nanofiller induced crystallization in random copolymers studied by dynamic Monte Carlo simulations. Mol. Simulat.2018, 1–9.

    Google Scholar 

  32. Liu, R.; Zhou, Z.; Liu, Y.; Liang, Z.; Ming, Y.; Hao, T.; Nie, Y. Epitaxial orientation and localized microphase separation prior to formation of nanohybrid shish-kebabs induced by onedimensional nanofiller in miscible diblock copolymers with selective interaction. Polymer2019, 166, 72–80.

    CAS  Google Scholar 

  33. Wu, S.; Wu, J.; Huang, G.; Li, H. A shish-kebab superstructure in low-crystallinity elastomer nanocomposites: morphology regulation and load-transfer. Macromol. Res.2015, 23, 537–554.

    CAS  Google Scholar 

  34. Pérez, R. A.; López, J. V.; Hoskins, J. N.; Zhang, B.; Grayson, S. M.; Casas, M. T.; Müller, A. J. Nucleation and antinucleation effects of functionalized carbon nanotubes on cyclic and linear poly(ε- caprolactones). Macromolecules2014, 47, 3553–3566.

    Google Scholar 

  35. Liu, K.; de Boer, E. L.; Yao, Y.; Romano, D.; Ronca, S.; Rastogi, S. Heterogeneous distribution of entanglements in a nonequilibrium polymer melt of UHMWPE: influence on crystallization without and with graphene oxide. Macromolecules2016, 49, 7497–7509.

    CAS  Google Scholar 

  36. Nie, Y.; Gao, H.; Hu, W. Variable trends of chain-folding in separate stages of strain-induced crystallization of bulk polymers. Polymer2014, 55, 1267–1272.

    CAS  Google Scholar 

  37. Nie, Y.; Zhao, Y.; Matsuba, G.; Hu, W. Shish-kebab crystallites initiated by shear fracture in bulk polymers. Macromolecules2018, 51, 480–487.

    CAS  Google Scholar 

  38. Wu, H.; Qiu, X.; Zhang, Y.; Yang, R.; Yang, J.; Liu, R.; Liu, Y.; Zhou, Z.; Hao, T.; Gu, Z.; Nie, Y. Formation mechanism of reverse kebab structure inside hollow nanotubes studied by molecular simulations. Comp. Mater. Sci.2018, 153, 348–355.

    CAS  Google Scholar 

  39. Qiu, X.; Zhang, Y.; Wu, H.; Yang, R.; Yang, J.; Liu, R.; Liu, Y.; Zhou, Z.; Hao, T.; Nie, Y. Blocked crystallization in capped ultrathin polymer films studied by molecular simulations. Polym. Int.2019, 68, 218–224.

    CAS  Google Scholar 

  40. Nie, Y.; Hao, T.; Gu, Z.; Wang, Y.; Liu, Y.; Zhang, D.; Wei, Y.; Li, S.; Zhou, Z. Relaxation and crystallization of oriented polymer melts with anisotropic filler networks. J. Phys. Chem. B2017, 121, 1426–1437.

    CAS  PubMed  Google Scholar 

  41. Nie, Y.; Gu, Z.; Zhou, Q.; Wei, Y.; Hao, T.; Liu, Y.; Liu, R.; Zhou, Z. Controllability of polymer crystal orientation using heterogeneous nucleation of deformed polymer loops grafted on two-dimensional nanofiller. J. Phys. Chem. B2017, 121, 6685–6690.

    CAS  PubMed  Google Scholar 

  42. Qiu, X.; Nie, Y.; Liu, Y.; Liu, R.; Gu, Z.; Zhou, Z.; Hao, T. Monte Carlo simulations of stereocomplex formation in multiblock copolymers. Phys. Chem. Chem. Phys.2019, 21, 13296–13303.

    CAS  PubMed  Google Scholar 

  43. Xu, Y.; Wu, H.; Yang, J.; Liu, R.; Zhou, Z.; Hao, T.; Nie, Y. Molecular simulations of microscopic mechanism of the effects of chain length on stereocomplex formation in polymer blends. Comp. Mater. Sci.2020, 172, 109297.

    CAS  Google Scholar 

  44. Hu, W. Structural transformation in the collapse transition of the single flexible homopolymer model. J. Chem. Phys.1998, 109, 3686–3690.

    CAS  Google Scholar 

  45. Hu, W. B.; Frenkel, D. Polymer crystallization driven by anisotropic interactions. Adv. Polym. Sci.2005, 191, 1–35.

    CAS  Google Scholar 

  46. Hu, W. Chain folding in polymer melt crystallization studied by dynamic Monte Carlo simulations. J. Chem. Phys.2001, 115, 4395–4401.

    CAS  Google Scholar 

  47. Mandelkern, L. Equilibrium concept. In Crystallization of polymers. Vol 1, 2nd edn., Cambridge University Press, 2002.

  48. Flory, P. J.; Vrij, A. Melting points of linear chain homologues: the normal paraffin hydrocarbons. J. Am. Chem. Soc.1963, 85, 3548–3553.

    CAS  Google Scholar 

  49. Hu, W. Polymer physics: a molecular approach. Springer Science & Business Media, 2012.

    Google Scholar 

  50. Tao, H.; Gao, F.; Gao, H.; Hu, W. H. Free energy change of crystallisation in single copolymers. Mol. Phys.2018, 116, 3020–3026.

    CAS  Google Scholar 

  51. Doi, M. Introduction to polymer physics. Oxford University Press, 1996.

    Google Scholar 

  52. Chen, H. L.; Li, L. J.; Ouyang, W. C.; Hwang, J. C.; Wong, W. Y. Spherulitic crystallization behavior of poly(ε-caprolactone) with a wide range of molecular weight. Macromolecules1997, 30, 1718–1722.

    CAS  Google Scholar 

  53. Flory, P. J.; Volkenstein, M. Statistical mechanics of chain molecules. Biopolymers1969, 8, 699–700.

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 21404050) and the Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX19_1593).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi-Ping Zhou or Yi-Jing Nie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, RJ., Zhou, ZP., Liu, Y. et al. Differences in Crystallization Behaviors between Cyclic and Linear Polymer Nanocomposites. Chin J Polym Sci 38, 1034–1044 (2020). https://doi.org/10.1007/s10118-020-2403-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2403-0

Keywords

Navigation