Skip to main content
Log in

Revisiting Silica Networks by Small-angle Neutron Scattering and Synchrotron Radiation X-ray Imaging Techniques

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The silicone rubber composites present remarkable mechanical properties due to the double network structure constructed with molecular network of matrix and filler network of silica. Nevertheless, the filler network structure and corresponding reinforcement mechanism are still under debate and need to be further probed with the aid of applicative advanced analysis techniques. Herein, small-angle neutron scattering (SANS) and synchrotron radiation X-ray nano-computed tomography (Nano-CT) techniques are employed to explore the evolution of filler networks of fumed, precipitated and sol-gel silica, respectively. Our studying results reveal the formation of filler network constructed by the interconnecting of branched silica aggregates. And the silica with highly associated structure, pertaining to amorphous morphology, small size, and large surface area, presents short distance and effective molecular chain bridge between aggregates, thus forming strong and steady filler networks. This work would provide deep-seated revisiting of filler networks and corresponding reinforcement mechanism and offer guidance for optimizing the mechanical properties of silicone rubber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shi, G.; Zhao, Z.; Pai, J. H.; Lee, I.; Zhang, L.; Stevenson, C.; Ishara, K.; Zhang, R.; Zhu, H.; Ma, J. Highly sensitive, wearable, durable strain sensors and stretchable conductors using graphene/silicon rubber composites. Adv. Funct. Mater.2016, 26, 7614–7625.

    CAS  Google Scholar 

  2. Qi, S.; Yu, M.; Fu, J.; Zhu, M.; Xie, Y.; Li, W. An EPDM/MVQ polymer blend based magnetorheological elastomer with good thermostability and mechanical performance. Soft Matter2018, 14, 8521–8528.

    CAS  PubMed  Google Scholar 

  3. Cao, L.; Fan, J.; Huang, J.; Chen, Y. A robust and stretchable crosslinked rubber network with recyclable and self-healable capabilities based on dynamic covalent bonds. J. Mater. Chem. A2019, 7, 4922–4933.

    CAS  Google Scholar 

  4. Song, Y.; Zheng, Q. Concepts and conflicts in nanoparticles reinforcement to polymers beyond hydrodynamics. Prog. Mater. Sci.2016, 84, 1–58.

    CAS  Google Scholar 

  5. Liu, J.; Wu, S.; Tang, Z.; Lin, T.; Guo, B.; Huang, G. New evidence disclosed for networking in natural rubber by dielectric relaxation spectroscopy. Soft Matter2015, 11, 2290–2299.

    CAS  PubMed  Google Scholar 

  6. Li, H.; Ai, D.; Ren, L.; Yao, B.; Han, Z.; Shen, Z.; Wang, J.; Chen, L. Q.; Wang, Q. Scalable polymer nanocomposites with record hightemperature capacitive performance enabled by rationally designed nanostructured inorganic fillers. Adv. Mater.2019, 31, 1900875.

    Google Scholar 

  7. Clough, J. M.; Creton, C.; Craig, S. L.; Sijbesma, R. P. Covalent bond scission in the mullins effect of a filled elastomer: real-time visualization with mechanoluminescence. Adv. Funct. Mater.2016, 26, 9063–9074.

    CAS  Google Scholar 

  8. Bouty, A.; Petitjean, L.; Degrandcourt, C.; Gummel, J.; Kwasniewski, P.; Meneau, F.; Boué, F.; Couty, M.; Jestin, J. Nanofiller structure and reinforcement in model silica/rubber composites: a quantitative correlation driven by interfacial agents. Macromolecules2014, 47, 5365–5378.

    CAS  Google Scholar 

  9. Araby, S.; Meng, Q.; Zhang, L.; Zaman, I.; Majewski, P.; Ma, J. Elastomeric composites based on carbon nanomaterials. Nanotechnology2015, 26, 112001.

    PubMed  Google Scholar 

  10. Papageorgiou, D. G.; Kinloch, I. A.; Young, R. J. Mechanical properties of graphene and graphene-based nanocomposites. Prog. Mater. Sci.2017, 90, 75–127.

    CAS  Google Scholar 

  11. Chen, L.; Jia, Z.; Tang, Y.; Wu, L.; Luo, Y.; Jia, D. Novel functional silica nanoparticles for rubber vulcanization and reinforcement. Compos. Sci. Technol.2017, 144, 11–17.

    CAS  Google Scholar 

  12. Rahimi, M.; Iriarte-Carretero, I.; Ghanbari, A.; Bohm, M. C.; Muller-Plathe, F. Mechanical behavior and interphase structure in a silica-polystyrene nanocomposite under uniaxial deformation. Nanotechnology2012, 23, 305702.

    PubMed  Google Scholar 

  13. Takahiro, K.; Zhu, X. L.; Vivian, M. L.; Daisuke, A.; Todd, J. M. Multicolor mechanochromism of a polymer/silica composite with dual distinct mechanophores. J. Am. Chem. Soc.2019, 141, 1898–1902.

    Google Scholar 

  14. Song, L.; Wang, Z.; Tang, X.; Chen, L.; Chen, P.; Yuan, Q.; Li, L. Visualizing the toughening mechanism of nanofiller with 3D Xray Nano-CT: stress-induced phase separation of silica nanofiller and silicone polymer double networks. Macromolecules2017, 50, 7249–7257.

    CAS  Google Scholar 

  15. Davris, T.; Mermet-Guyennet, M. R. B.; Bonn, D. Filler size effects on reinforcement in elastomer-based nanocomposites: experimental and simulational insights into physical mechanisms. Macromolecules2016, 49, 7077–7087.

    CAS  Google Scholar 

  16. Li, H.; Yang, L.; Weng, G.; Xing, W.; Wu, J.; Huang, G. Toughening rubbers with a hybrid filler network of graphene and carbon nanotubes. J. Mater. Chem. A2015, 3, 22385–22392.

    CAS  Google Scholar 

  17. Wu, W.; Xu, C.; Zheng, Z.; Lin, B.; Fu, L. Strengthened, recyclable shape memory rubber films with a rigid filler nano-capillary network. J. Mater. Chem. A2019, 7, 6901–6910.

    CAS  Google Scholar 

  18. Tong, X.; Du, L.; Xu, Q. Tough, adhesive and self-healing conductive 3D network hydrogel of physically linked functionalized-boron nitride/clay/poly(N-isopropylacrylamide). J. Mater. Chem. A2018, 6, 3091–3099.

    CAS  Google Scholar 

  19. Kamio, E.; Yasui, T.; Iida, Y.; Gong, J. P.; Matsuyama, H. Inorganic/organic double-network gels containing ionic liquids. Adv. Mater.2017, 29, 1704118.

  20. Banc, A.; Genix, A. C.; Dupas, C.; Sztucki, M.; Schweins, R.; Appavou, M. S.; Oberdisse, J. Origin of small-angle scattering from contrast-matched nanoparticles: a study of chain and filler structure in polymer nanocomposites. Macromolecules2015, 48, 6596–6605.

    CAS  Google Scholar 

  21. Cao, X.; Zhou, X.; Weng, G. Nanocavitation in silica filled styrenebutadiene rubber regulated by varying silica-rubber interfacial bonding. Polym. Adv. Technol.2018, 29, 1779–1787.

    CAS  Google Scholar 

  22. Liu, D.; Chen, J.; Song, L.; Lu, A.; Wang, Y.; Sun, G. Parameterization of silica-filled silicone rubber morphology: a contrast variation SANS and TEM study. Polymer2017, 120, 155–163.

    CAS  Google Scholar 

  23. Kosuge, T.; Imato, K.; Goseki, R.; Otsuka, H. Polymer-inorganic composites with dynamic covalent mechanochromophore. Macromolecules2016, 49, 5903–5911.

    CAS  Google Scholar 

  24. Kubiak, J. M.; Macfarlane, R. J. Forming covalent crosslinks between polymer-grafted nanoparticles as a route to highly filled and mechanically robust nanocomposites. Adv. Funct. Mater.2019, 29, 1905168.

    CAS  Google Scholar 

  25. Richter, D.; Kruteva, M. Polymer dynamics under confinement. Soft Matter2019, 15, 7316–7349.

    CAS  PubMed  Google Scholar 

  26. Tadiello, L.; D’Arienzo, M.; Di, C. B.; Hanel, T.; Matejka, L.; Mauri, M.; Morazzoni, F.; Simonutti, R.; Spirkova, M.; Scotti, R. The fillerrubber interface in styrene butadiene nanocomposites with anisotropic silica particles: morphology and dynamic properties. Soft Matter2015, 11, 4022–4033.

    CAS  PubMed  Google Scholar 

  27. Zheng, J.; Han, D.; Ye, X.; Wu, X.; Wu, Y.; Wang, Y.; Zhang, L. Chemical and physical interaction between silane coupling agent with long arms and silica and its effect on silica/natural rubber composites. Polymer2018, 135, 200–210.

    CAS  Google Scholar 

  28. Xu, H.; Song, Y.; Zheng, Q. Contributions of silica network and interfacial fraction in reinforcement and Payne effect of polypropylene glycol nanocomposites. Polymer2018, 138, 139–145.

    CAS  Google Scholar 

  29. Lei, W.; Zhou, X.; Russell, T. P.; Hua, K. C.; Yang, X.; Qiao, H.; Wang, W.; Li, F.; Wang, R.; Zhang, L. High performance bio-based elastomers: energy efficient and sustainable materials for tires. J. Mater. Chem. A2016, 4, 13058–13062.

    CAS  Google Scholar 

  30. Zhang, M.; Li, Y.; Kolluru, P. V.; Brinson, L. C. Determination of mechanical properties of polymer interphase using combined atomic force microscope (AFM) experiments and finite element simulations. Macromolecules2018, 51, 8229–8240.

    CAS  Google Scholar 

  31. Gundlach, N.; Hentschke, R. Modelling filler dispersion in elastomers: relating filler morphology to interface free energies via SAXS and TEM simulation studies. Polymers2018, 10, 446.

  32. Gan, S.; Wu, Z. L.; Xu, H.; Song, Y.; Zheng, Q. Viscoelastic behaviors of carbon black gel extracted from highly filled natural rubber compounds: insights into the payne effect. Macromolecules2016, 49, 1454–1463.

    CAS  Google Scholar 

  33. Gavrilov, A. A.; Chertovich, A. V.; Khalatur, P. G.; Khokhlov, A. R. Study of the mechanisms of filler reinforcement in elastomer nanocomposites. Macromolecules2014, 47, 5400–5408.

    CAS  Google Scholar 

  34. Tohsan, A.; Kishi, R.; Ikeda, Y. A model filler network in nanocomposites prepared by in situ silica filling and peroxide cross-linking in natural rubber latex. Colloid. Polym. Sci.2015, 293, 2083–2093.

    CAS  Google Scholar 

  35. Allegra, G.; Raos, G.; Vacatello, M. Theories and simulations of polymer-based nanocomposites: from chain statistics to reinforcement. Prog. Polym. Sci.2008, 33, 683–731.

    CAS  Google Scholar 

  36. Tatou, M.; Genix, A. C.; Ima, A.; Forcada, J.; Banc, A.; Schweins, R.; Grillo, I.; Oberdisse, J. Reinforcement and polymer mobility in silica-latex nanocomposites with controlled aggregation. Macromolecules2011, 44, 9029–9039.

    CAS  Google Scholar 

  37. Hosseini, S. M.; Razzaghi-Kashani, M. Catalytic and networking effects of carbon black on the kinetics and conversion of sulfur vulcanization in styrene butadiene rubber. Soft Matter2018, 14, 9194–9208.

    CAS  PubMed  Google Scholar 

  38. Chen, Q.; Gong, S.; Moll, J.; Zhao, D.; Kumar, S. K.; Colby, R. H. Mechanical reinforcement of polymer nanocomposites from percolation of a nanoparticle network. ACS Macro Lett.2015, 4, 398–402.

    CAS  Google Scholar 

  39. Ueda, E.; Liang, X.; Ito, M.; Nakajima, K. Dynamic moduli mapping of silica-filled styrene-butadiene rubber vulcanizate by nanorheological atomic force microscopy. Macromolecules2018, 52, 311–319.

    Google Scholar 

  40. Zheng, X.; Jin, Y.; Chen, J.; Li, B.; Fu, Q.; He, G. Mechanical properties and microstructure characterization of natural rubber reinforced by helical carbon nanofibers. J. Mater. Sci.2019, 54, 12962–12971.

    CAS  Google Scholar 

  41. Liu, D.; Song, L.; Song, H.; Chen, J.; Tian, Q.; Chen, L.; Sun, L.; Lu, A.; Huang, C.; Sun, G. Correlation between mechanical properties and microscopic structures of an optimized silica fraction in silicone rubber. Compos. Sci. Technol.2018, 165, 373–379.

    CAS  Google Scholar 

  42. Morfin, I.; Ehrburger-Dolle, F.; Grillo, I.; Livet, F.; Bley, F. ASAXS, SAXS and SANS investigations of vulcanized elastomers filled with carbon black. J. Synchrotron. Radiat.2006, 13, 445–452.

    CAS  PubMed  Google Scholar 

  43. Bouty, A.; Petitjean, L.; Chatard, J.; Matmour, R.; Degrandcourt, C.; Schweins, R.; Meneau, F.; Kwasniewski, P.; Boué, F.; Couty, M.; Jestin, J. Interplay between polymer chain conformation and nanoparticle assembly in model industrial silica/rubber nanocomposites. Faraday Discuss.2016, 186, 325–343.

    CAS  PubMed  Google Scholar 

  44. Robbes, A. S.; Cousin, F.; Meneau, F.; Jestin, J. Melt chain conformation in nanoparticles/polymer nanocomposites elucidated by the SANS extrapolation method: evidence of the filler contribution. Macromolecules2018, 51, 2216–2226.

    CAS  Google Scholar 

  45. Zhang, C.; Yang, S.; Padmanabhan, V.; Akcora, P. Solution rheology of poly(acrylic acid)-grafted silica nanoparticles. Macromolecules2019, 52, 9594–9603.

    CAS  Google Scholar 

  46. Wei, Z. Y.; Ning, N. Y.; Tian, M.; Zhang, L. Q.; Mi, J. G. Theoretical interpretation of conformation variations of polydimethylsiloxane induced by nanoparticles. Chinese J. Polym. Sci.2018, 36, 505–513.

    CAS  Google Scholar 

  47. Chen, L.; Song, L.; Li, J.; Chen, P.; Huang, N.; Li, L. From the volume-filling effect to the stress-bearing network: the reinforcement mechanisms of carbon black filler in natural rubber. Macromol. Mater. Eng.2016, 301, 1390–1401.

    CAS  Google Scholar 

  48. Chen, L.; Zhou, W.; Lu, J.; Li, J.; Zhang, W.; Huang, N.; Wu, L.; Li, L. Unveiling reinforcement and toughening mechanism of filler network in natural rubber with synchrotron radiation X-ray nanocomputed tomography. Macromolecules2015, 48, 7923–7928.

    CAS  Google Scholar 

  49. Zaman, W.; Hortance, N.; Dixit, M. B.; De Andrande, V.; Hatzell, K. B. Visualizing percolation and ion transport in hybrid solid electrolytes for Li-metal batteries. J. Mater. Chem. A2019, 7, 23914–13921.

    CAS  Google Scholar 

  50. Kohjiya, S.; Kato, A.; Ikeda, Y. Visualization of nanostructure of soft matter by 3D-TEM: nanoparticles in a natural rubber matrix. Prog. Polym. Sci.2008, 33, 979–997.

    CAS  Google Scholar 

  51. Rishi, K.; Beaucage, G.; Kuppa, V.; Mulderig, A.; Narayanan, V.; McGlasson, A.; Rackaitis, M.; Ilavsky, J. Impact of an emergent hierarchical filler network on nanocomposite dynamics. Macromolecules2018, 51, 7893–7904.

    CAS  Google Scholar 

  52. Tauban, M.; Delannoy, J. Y.; Sotta, P.; Long, D. R. Effect of filler morphology and distribution state on the linear and nonlinear mechanical behavior of nanofilled elastomers. Macromolecules2017, 50, 6369–6384.

    CAS  Google Scholar 

  53. Kline, S. R. Reduction and analysis of SANS and USANS data using igor pro. J. Appl. Crystallogr.2006, 39, 895–900.

    CAS  Google Scholar 

  54. Yang, R.; Song, Y.; Zheng, Q. Payne effect of silica-filled styrenebutadiene rubber. Polymer2017, 116, 304–313.

    CAS  Google Scholar 

  55. Baeza, G. P.; Genix, A. C.; Degrandcourt, C.; Petitjean, L.; Gummel, J.; Couty, M.; Oberdisse, J. Multiscale filler structure in simplified industrial nanocomposite silica/SBR systems studied by SAXS and TEM. Macromolecules2012, 46, 317–329.

    Google Scholar 

  56. Cheng, L.; Ye, A.; Hemar, Y.; Gilbert, E. P.; De Campo, L.; Whitten, A. E.; Singh, H. Interfacial structures of droplet-stabilized emulsions formed with whey protein microgel particles as revealed by small-angle and ultra-small-angle neutron scattering. Langmuir2019, 35, 12017–12027.

    CAS  PubMed  Google Scholar 

  57. Schmitt, C.; Moitzi, C.; Bovay, C.; Rouvet, M.; Bovetto, L.; Donato, L.; Leser, M. E.; Schurtenberger, P.; Stradner, A. Internal structure and colloidal behaviour of covalent whey protein microgels obtained by heat treatment. Soft Matter2010, 6, 4876–4884.

    CAS  Google Scholar 

  58. Oberdisse, J.; González-Burgos, M.; Mendia, A.; Arbe, A.; Moreno, A. J.; Pomposo, J. A.; Radulescu, A.; Colmenero, J. Effect of molecular crowding on conformation and interactions of singlechain nanoparticles. Macromolecules2019, 52, 4295–4305.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financailly supported by the National Natural Science Foundation of China (Nos. 11605171 and 21973076), Sichuan Science and Technology Program (No. 2018GZ0155), Ph.D program Foundation of SWUST (No. 18ZX7112), Longshan Program for Talents (SWUST, No.18LZXT11) and the Project of State Key Laboratory of Environment-Friendly Energy Materials (SWUST, No. 19FKSY16). This work was carried out in State Key Laboratory for Environment-Friendly Energy Materials, Mianyang, China and Beijing Synchrotron Radiation Facility (BSRF).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying-Ze Song or Li-Xian Song.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, XW., Liu, D., Zhang, P. et al. Revisiting Silica Networks by Small-angle Neutron Scattering and Synchrotron Radiation X-ray Imaging Techniques. Chin J Polym Sci 38, 1006–1014 (2020). https://doi.org/10.1007/s10118-020-2402-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2402-1

Keywords

Navigation