Skip to main content
Log in

Quinolinyl Imidazolidin-2-imine Nickel Catalyzed Efficient Copolymerization of Norbornene with para-Chlorostyrene

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

A series of novel quinolinyl imidazolidin-2-imine nickel complexes with different substituents on the imidazolidin-2-imine ligand were synthesized and characterized. The complexes in the presence of methylaluminoxane (MAO) as a cocatalyst catalyzed the copolymerization of norbornene (N) and styrene (S) or para-chlorostyrene (CS) with high activity (up to 1070 kg·mol−1·h−1). The installation of sterically bulky substituents on the imidazolidine-2-imine ligand was effective for the increase of the molecular weight and the comonomer content, affording high molecular weight copolymers with tunable CS content (0.57 mol%–11.7 mol%), in which the existence of Cl group can provide reaction site for the further functionalization of copolymers as well as the synthesis of graft or cross-linked polymers. The linear relationship between the comonomer content and the glass transition temperature of the copolymers and the monomer reactivity ratios in the copolymerization indicated the formation of the expected functionalized cyclic olefin copolymers (COC).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Khanarian, G.; Celanese, H. Optical properties of cyclic olefin copolymers. Opt. Eng.2001, 40, 1024–1029.

    CAS  Google Scholar 

  2. Tritto, I.; Boggioni, L.; Ferro, D. R., Metallocene catalyzed ethene- and propene co-norbornene polymerization: mechanisms from a detailed microstructural analysis. Coord. Chem. Rev.2006, 250, 212–241.

    CAS  Google Scholar 

  3. Li, X.; Hou, Z. Organometallic catalysts for copolymerization of cyclic olefins. Coord. Chem. Rev.2008, 252, 1842–1869.

    CAS  Google Scholar 

  4. Ban, H. T.; Hagihara, H.; Nishii, K.; Tsunogae, Y.; Nojima, S.; Shiono, T. A new approach for controlling birefringent property of cyclic olefin copolymers. J. Polym. Sci., Part A: Polym. Chem.2008, 46, 7395–7400.

    CAS  Google Scholar 

  5. Ban, H. T.; Hagihara, H.; Tsunogae, Y.; Cai, Z. G.; Shiono, T. Highly thermostable and low birefringent norbornene-styrene copolymers with advanced optical properties: a potential plastic substrate for flexible displays. J. Polym. Sci., Part A: Polym. Chem.2010, 49, 65–71.

    Google Scholar 

  6. Peruch, F.; Cramail, H.; Deffieux, A. Homopolymerization and copolymerization of styrene and norbornene with Ni-based/MAO catalysts. Macromol. Chem. Phys.1998, 199, 2221–2227.

    CAS  Google Scholar 

  7. Zhao, C. T.; Ribeiro, M. R.; Portela, M. F.; Pereira, S.; Nunes, T. Homo- and copolymerisation of norbornene and styrene with nickel bis(acetyl acetonate)/methylaluminoxane system. Eur. Polym. J.2001, 37, 45–54.

    CAS  Google Scholar 

  8. Suzuki, H.; Matsumura, S. I.; Satoh, Y.; Sogoh, K.; Yasuda, H. Random copolymerizations of norbornene with other monomers catalyzed by novel Ni compounds involving N- or O-donated ligands. React. Funct. Polym.2004, 58, 77–91.

    CAS  Google Scholar 

  9. Bao, F.; Lv, X. Q.; Chen, Y. Copolymerization of norbornene and styrene catalyzed by a series of bis(β-ketoamine) nickel(II) complexes in the presence of methylaluminoxane. Polym. Bull. 2007, 58, 495–502.

    CAS  Google Scholar 

  10. Ogata, K.; Nishimura, N.; Yunokuchi, T.; Toyota, A. Copolymerization of tetracyclododecene or norbornene with styrene in the presence of Ni(II) complex/MAO catalytic system: first example for transition metal catalyzed copolymerization of tetracyclododecene with styrene. J. Appl. Polym. Sci.2008, 108, 1562–565.

    CAS  Google Scholar 

  11. Li, Y.; Wu, Q.; Shan, M.; Gao, M. Copolymerization of styrene and norbornene with β-diketiminato nickel/methylaluminoxane catalytic system. Appl. Organometal. Chem.2012, 26, 225–229.

    CAS  Google Scholar 

  12. Gao, H.; Chen, Y.; Zhu, F. M.; Wu, Q. Copolymerization of norbornene and styrene catalyzed by a novel anilido-imino nickel complex/methylaluminoxane system. J. Polym. Sci., Part A: Polym. Chem.2006, 44, 5237–5246.

    CAS  Google Scholar 

  13. Xing, Y.; Chen, Y.; He, X. Copolymerization of norbornene with styrene catalyzed by Ni{CF3C(O)CHC[N(naphthyl)]CH3}2/B(C6F5)3 and transparent films. J. Polym. Eng.2012, 32, 7–12.

    CAS  Google Scholar 

  14. Mi, X.; Ma, Z.; Wang, L.; Ke, Y.; Hu, Y. Homo- and copolymerization of norbornene and styrene with Pd- and Ni-based novel bridged dinuclear diimine complexes and MAO. Macromol. Chem. Phys.2003, 204, 868–876.

    CAS  Google Scholar 

  15. Bao, F.; Ma, R.; Jiao, Y. H. Homo- and copolymerization of norbornene with styrene catalyzed by a series of copper(II) complexes in the presence of methylaluminoxane. Appl. Organometal. Chem.2006, 20, 368–374.

    CAS  Google Scholar 

  16. Feng, Q.; Chen, D.; Feng, D.; Jiao, L.; Peng, Z.; Pei, L. Synthesis of poly(norbornene-co-styrene) copolymers containing high styrene incorporation using bis(β-ketoamino) copper catalysts. J. Polym. Res.2014, 21, 497.

    Google Scholar 

  17. Franssen, N. M. G.; Reek, J. N. H.; de Bruin, B. Synthesis of functional ‘polyolefins’: state of the art and remaining challenges. Chem. Soc. Rev.2013, 42, 5809–5832.

    CAS  PubMed  Google Scholar 

  18. Nakamura, A.; Anselment, T. M. J.; Claverie, J.; Goodall, B.; Jordan, R. F.; Mecking, S.; Rieger, B.; Sen, A.; van Leeuwen, P. W. N. M.; Nozaki, K. Ortho-phosphinobenzenesulfonate: a superb ligand for palladium-catalyzed coordination-insertion copolymerization of polar vinyl monomers. Acc. Chem. Res.2013, 46, 1438–1449.

    CAS  PubMed  Google Scholar 

  19. Tan, C.; Chen, C. Emerging palladium and nickel catalysts for copolymerization of olefins with polar monomers. Angew. Chem. Int. Ed.2019, 58, 7192–7200.

    CAS  Google Scholar 

  20. Liang, T.; Goudari, S.; Chen, C. L. A simple and versatile nickel platform for the generation of branched high molecular weight polyolefins. Nat. Commun.2020, 11, 372.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen, M.; Chen, C. Direct and tandem routes for the copolymerization of ethylene with polar functionalized internal olefins. Angew. Chem. Int. Ed.2020, 59, 1206–1210.

    CAS  Google Scholar 

  22. Zou, C.; Chen, C. Polar-functionalized, crosslinkable, self-healing and photoresponsive polyolefins. Angew. Chem. Int. Ed.2020, 59, 395–402.

    CAS  Google Scholar 

  23. Tan, C.; Qasim, M.; Pang, W. M.; Chen, C. Ligand-metal secondary interaction in phosphine-sulfonate palladium and nickel catalyzed ethylene (co)polymerization. Polym. Chem. 2020, 11, 411–416.

    CAS  Google Scholar 

  24. Wang, B.; Daugulis, O.; Brookhart, M. Ethylene polymerization with Ni(II) diimine complexes generated from 8-halo-1-naphthylamines: the role of equilibrating syn/anti diastereomers in determining polymer properties. Organometallics2019, 38, 4658–4668.

    CAS  Google Scholar 

  25. Wang, F. Z.; Tian, S. S.; Lia, R. P.; Li, W. M.; Chen, C. Ligand steric effects on naphthyl-α-diimine nickel catalyzed α-olefin polymerization. Chinese J. Polym. Sci.2018, 36, 157–162.

    Google Scholar 

  26. Tan, C.; Pang, W.; Chen, C. A phenol-containing α-diimine ligand for nickel- and palladium-catalyzed ethylene polymerization. Chinese J. Polym. Sci.2019, 37, 974–980.

    CAS  Google Scholar 

  27. Sun, W.; Song, S.; Li, B.; Redshaw, C.; Hao, X.; Li, Y.; Wang, F. S. Ethylene polymerization by 2-iminopyridylnickel halide complexes: synthesis, characterization and catalytic influence of the benzhydryl group. Dalton Trans.2012, 41, 11999–12010.

    CAS  PubMed  Google Scholar 

  28. Dai, S.; Sui, X.; Chen, C. Synthesis of high molecular weight polyethylene using iminopyridyl nickel catalysts. Chem. Commun.2016, 52, 9113–9116.

    CAS  Google Scholar 

  29. Sun, Z.; Yue, E.; Qu, M.; Oleynik, I. V.; Oleynik, I. I.; Li, K.; Liang, T.; Zhang, W.; Sun, W. 8-(2-Cycloalkylphenylimino)-5,6,7-rrihydroquinolylnickel halides: polymerizing ethylene to highly branched and lower molecular weight polyethylenes. Inorg. Chem. Front.2015, 2, 223–227.

    CAS  Google Scholar 

  30. Wang, Z.; Liu, Q.; Solan, G. A.; Sun, W. Recent advances in Ni-mediated ethylene chain growth: Nimine-donor ligand effects on catalytic activity, thermal stability and olig-/polymer structure. Coord. Chem. Rev.2017, 350, 68–83.

    CAS  Google Scholar 

  31. Nomura, K.; Bahuleyan, B. K.; Zhang, S.; Sharma, P. M. V.; Katao, S.; Igarashi, A.; Inagaki, A.; Tamm, M. Synthesis and structural analysis of (imido)vanadium(V) dichloride complexes containing imidazolin-2-iminato- and imidazolidin-2-iminato ligands, and their use as catalyst precursors for ethylene (co)polymerization. Inorg. Chem.2014, 53, 607–623.

    CAS  PubMed  Google Scholar 

  32. Nomura, K.; Fukuda, H.; Katao, S.; Fujiki, M.; Kim, H. J.; Kim, D. H.; Zhang, S. Effect of ligand substituents in olefin polymerisation by half-sandwich titanium complexes containing monoanionic iminoimidazolidide ligands-MAO catalyst systems. Dalton Trans. 2011, 40, 7842–7849.

    CAS  PubMed  Google Scholar 

  33. Nomura, K.; Fukuda, H.; Matsuda, H.; Katao, S.; Patamma, S. Synthesis and structural analysis of half-titanocenes containing 1,3-imidazolidin-2-iminato ligands: effect of ligand substituents in ethylene (co)polymerization. J. Org. Chem.2015, 798, 375–383.

    CAS  Google Scholar 

  34. Shoken, D; Shimon, L. J. W.; Tamm, M.; Eisen, M. S. Synthesis of imidazolin-2-iminato titanium complexes containing aryloxo ligands and their catalytic performance in the polymerization of α-olefins. Organometallics2016, 35, 1125–1131.

    CAS  Google Scholar 

  35. Shoken, D.; Sharma, M.; Botoshansky, M.; Tamm, M.; Eisen, M. S. Mono(imidazolin-2-iminato) titanium complexes for ethylene polymerization at low amounts of methylaluminoxane. J. Am. Chem. Soc.2013, 135, 12592–12595.

    CAS  PubMed  Google Scholar 

  36. Nomura, K.; Patamma, S.; Matsuda, H.; Katao, S.; Tsutsumi, K.; Fukuda, H. Synthesis of half-titanocenes containing 1,3-imidazolidin-2-iminato ligands of type, Cp*TiCl2[1,3-R2(CH2N)2C]N]: highly active catalyst precursors in ethylene (co)polymerization. RSC Adv.2015, 5, 64503–64513.

    CAS  Google Scholar 

  37. Haas, I.; Hubner, C.; Kretschmer, W. P.; Kempe, R. A highly efficient titanium catalyst for the synthesis of ultrahigh-molecular-weight polyethylene (UHMWPE). Chem. Eur. J.2013, 19, 9132–9136.

    CAS  PubMed  Google Scholar 

  38. Neuba, A.; Haase, R.; Bernard, M.; Flörke, U.; Herres-Pawlis, S. A systematic study on the coordination properties of the guanidine ligand N1, N2-bis(1,3-dimethylimidazolidin-2-ylidene)-ethane-1,2-diamine with the metals Mn, Co, Ni, Ag and Cu. Z. Anorg. Allg. Chem.2008, 634, 2511–2517.

    CAS  Google Scholar 

  39. Filimon, S. A.; Hrib, C. G.; Randoll, S.; Neda, I.; Jones, P. G.; Tamm, M. Quinine-derived imidazolidin-2-imine ligands: synthesis, coordination chemistry, and application in catalytic transfer hydrogenation. Z. Anorg. Allg. Chem.2010, 636, 691–699.

    CAS  Google Scholar 

  40. Li, M.; Shu, X.; Cai, Z.; Eisen, M. S. Synthesis, structures, and norbornene polymerization behavior of neutral nickel(II) and palladium(II) complexes bearing aryloxide imidazolidin-2-imine ligands. Organometallics2018, 37, 1172–1180.

    CAS  Google Scholar 

  41. Li, M.; Cai, Z.; Eisen, M. S. Neutral nickel(II) complexes bearing aryloxide imidazolin-2-imine ligands for efficient copolymerization of norbornene and polar monomers. Organometallics2018, 37, 4753–4762.

    CAS  Google Scholar 

  42. Rösener, T.; Hoffmann, A.; Herres-Pawlis, S. Next generation of guanidine quinoline copper complexes for highly controlled ATRP: Influence of backbone substitution on redox chemistry and solubilit. Eur. J. Inorg. Chem.2018, 3164–3175.

  43. Stanek, J.; Konrad, M.; Mannsperger, J.; Hoffmann, A.; Herres-Pawlis, S. Influence of functionalized substituents on the electron transfer abilities of copper guanidinoquinoline complexes. Eur. J. Inorg. Chem.2018, 4997–5006.

  44. Ferretti, F.; Gallo, E.; Ragaini, F. Nitrogen ligands effects in the palladium-catalyzed carbonylation reaction of nitrobenzene to give N-methyl phenylcarbamate. J. Organomet. Chem.2014, 771, 59–67.

    CAS  Google Scholar 

  45. Tang, P.; Wang, W.; Ritter, T. Deoxyfluorination of phenol. J. Am. Chem. Soc.2011, 133, 11482–11484.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Schrempp, D. F.; Leingang, S.; Schnurr, M.; Kaifer, E.; Wadepohl, H.; Himmel, H. J. Inter- and intramolecular electron transfer in copper complexes: electronic entatic state with redox-active guanidine ligands. Chem. Eur. J.2017, 23, 13607–13611.

    CAS  PubMed  Google Scholar 

  47. Guazzelli, L.; Chiappe, C. Investigation of a family of structurally-related guanidinium ionic liquids through XPS and thermal analysis. J. Mol. Liq.2019, 277, 280–289.

    Google Scholar 

  48. Antonov, A. A.; Semikolenova, N. V.; Talsi, E. P.; Matsko, M.A.; Zakharov, V. A.; Bryliakov, K. P. 2-Iminopyridine nickel(II) complexes bearing electron-withdrawing groups in the ligand core: synthesis, characterization, ethylene oligo- and polymerization behavior. J. Organomet. Chem.2016, 822, 241–249.

    CAS  Google Scholar 

  49. Lovett, D. M.; Thierer, L. M.; Santos, E. E. P.; Hardie, R. L.; Dougherty, W. G.; Piro, N. A.; Kassel, W. S.; Cromer, B. M.; Coughlin, E. B.; Zubris, D. L. Structural analysis of imino- and amino-pyridine ligands for Ni(II): precatalysts for the polymerization of ethylene. J. Organomet. Chem.2018, 863, 44–53.

    CAS  Google Scholar 

  50. Zhang, R.; Wang, Z.; Flisak, Z.; Hao, X.; Liu, Q.; Sun, W. Achieving branched polyethylene waxes by aryliminocycloocta[b]pyri-dylnickel precatalysts: synthesis, characterization, and ethylene polymerization. J. Polym. Sci., Part A: Polym. Chem.2017, 55, 2601–2610.

    CAS  Google Scholar 

  51. Song, D.; Shi, X.; Wang, Y.; Yang, J.; Li, Y. Ligand steric and electronic effects on β-ketiminato neutral nickel(ii) olefin polymerization catalysts. Organometallics2012, 31, 966–975.

    CAS  Google Scholar 

  52. Kausar, A. Novel nanofiltration membranes of poly(4-chlorostyrene)-grafted-1-(4-thiocarbamoylaminophenyl-sulfonylphenyl) thiourea and gold/polystyrene composite nanoparticle. Am. J. Polym. Sci. Eng.2014, 2, 33–49.

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 21774018), the Fundamental Research Funds for the Central Universities (No. 2232020A-05), and the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ru Xiao or Zheng-Guo Cai.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, YQ., Zhou, J., Xiao, R. et al. Quinolinyl Imidazolidin-2-imine Nickel Catalyzed Efficient Copolymerization of Norbornene with para-Chlorostyrene. Chin J Polym Sci 38, 941–949 (2020). https://doi.org/10.1007/s10118-020-2400-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2400-3

Keywords

Navigation