Skip to main content
Log in

Thermally Conductive and Insulating Epoxy Composites by Synchronously Incorporating Si-sol Functionalized Glass Fibers and Boron Nitride Fillers

  • Article
  • Invited article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Glass fibers (GFs)/epoxy laminated composites always present weak interlaminar shear strength (ILSS) and low cross-plane thermal conductivity coefficient (λ). In this work, silica-sol, synthesized from tetraethyl orthosilicate (TEOS) and KH-560 via sol-gel method, was employed to functionalize the surface of GFs (Si-GFs). Together with a spherical boron nitride (BNN-30), the thermally conductive BNN-30/Si-GFs/epoxy laminated composites were then fabricated. Results demonstrate that Si-sol is beneficial to the improvement of mechanical properties for epoxy laminated composites (especially for ILSS). The BNN-30/Si-GFs/epoxy laminated composites with 15 wt% BNN-30 fillers display the optimal comprehensive properties. In-plane λ(λ//) and λ reach the maximum of 2.37 and 1.07 W·m−1·K−1, 146.9% and 132.6% higher than those of Si-GFs/epoxy laminated composites (λ// = 0.96 W·m−1·K−1 and λ = 0.46 W·m−1·K−1), respectively, and also about 10.8 and 4.9 times those of pure epoxy resin (λ// = λ 0.22 W·m−1·K−1). And the heat-resistance index (THRI), dielectric constant (ε), dielectric loss (tanδ), breakdown strength (E0), surface resistivity (ρs) as well as volume resistivity (ρv) are 197.3 °C, 4.95, 0.0046, 22.3 kV·mm−1, 1.8 × 1014Ω, and 2.1 × 1014Ω·cm, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Yang, X. L.; Li, K.; Xu, M. Z.; Liu, X. B. Designing a phthalonitrile/benzoxazine blend for the advanced GFRP composite material. Chinese J. Polym. Sci.2018, 36, 106–112.

    Article  CAS  Google Scholar 

  2. Xu, X.; Zhang, Y.; Jiang, J.; Wang, H.; Zhao, X.; Li, Q.; Lu, W. In-situ curing of glass fiber reinforced polymer composites via resistive heating of carbon nanotube films. Compos. Sci. Technol.2017, 149, 20–27.

    Article  CAS  Google Scholar 

  3. Agrawal, S.; Singh, K. K.; Sarkar, P. K. A comparative study of wear and friction characteristics of glass fibre reinforced epoxy resin, sliding under dry, oil-lubricated and inert gas environments. Tribol. Int.2016, 96, 217–224.

    Article  CAS  Google Scholar 

  4. Park, D. W.; Oh, G. H.; Kim, H. S. Predicting the stacking sequence of E-glass fiber reinforced polymer (GFRP) epoxy composite using terahertz time-domain spectroscopy (THz-TDS) system. Compos. Part B Eng.2017, 177, 107385.

    Article  CAS  Google Scholar 

  5. Shahkhosravi, N. A.; Yousefi, J.; Najafabadi, M. A.; Burvill, C.; Minak, G. Fatigue life reduction of GFRP composites due to delamination associated with the introduction of functional discontinuities. Compos. Part B Eng.2019, 163, 536–547.

    Article  CAS  Google Scholar 

  6. Rahmat, M.; Ashrafi, B.; Naftel, A.; Djokic, D.; Martinez-Rubi, Y.; Jakubinek, M. B.; Simard, B. Enhanced shear performance of hybrid glass fiber-epoxy laminates modified with boron nitride nanotubes. ACS Appl. Nano Mater.2018, 1, 2709–2717.

    Article  CAS  Google Scholar 

  7. Gu, S. L.; Liu, H. H.; Cao, H.; Mercier, C.; Li, Y. J. Investigations on the interactions between Li-TFSI and glass fibers in the ternary PP/GF/Li-TFSI composites. Chinese J. Polym. Sci.2018, 36, 113–118.

    Article  CAS  Google Scholar 

  8. Halder, S.; Ahemad, S.; Das, S.; Wang, J. Epoxy/glass fiber laminated composites integrated with amino functionalized ZrO2 for advanced structural applications. ACS Appl. Mater. Interfaces2016, 8, 1695–1706.

    Article  CAS  PubMed  Google Scholar 

  9. Slobodian, P.; Lloret, Pertegás S.; Riha, P.; Matyas, J.; Olejnik, R.; Schledjewski, R.; Kovar, M. Glass fiber/epoxy composites with integrated layer of carbon nanotubes for deformation detection. Compos. Sci. Technol.2018, 156, 61–69.

    Article  CAS  Google Scholar 

  10. Tang, Y.; Gu, J.; Yu, Y.; Kong, J. Preparation of POSS/quartz fibers/cyanate ester resins laminated composites. Pylym. Compos.2015, 36, 2017–2021.

    Article  CAS  Google Scholar 

  11. Zhang, L. X.; Chang, Q.; Sun, Z.; Zhang, J. J.; Qi, J. L.; Feng, J. C. Wetting of AgCuTi alloys on quartz fiber reinforced composite modified by vertically aligned carbon nanotubes. Carbon2019, 154, 375–383.

    Article  CAS  Google Scholar 

  12. Alsaadi, M.; Bulut, M.; Erklig, A.; Jabbar, A. Nano-silica inclusion effects on mechanical and dynamic behavior of fiber reinforced carbon/Kevlar with epoxy resin hybrid composites. Compos. Part B Eng.2018, 152, 169–179.

    Article  CAS  Google Scholar 

  13. Tang, L.; Dang, J.; He, M.; Li, J.; Kong, J.; Tang, Y.; Gu, J. Preparation and properties of cyanate-based wave-transparent laminated composites reinforced by dopamine/POSS functionalized Kevlar cloth. Compos. Sci. Technol.2019, 169, 120–126.

    Article  CAS  Google Scholar 

  14. Yu, L.; Lu, F.; Huang, X.; Liu, Y.; Li, M.; Pan, H.; Wu, L.; Huang, Y.; Hu, Z. Facile interface design strategy for improving the uvioresistant and self-healing properties of poly(p-phenylene benzobisoxazole) fibers. ACS Appl. Mater. Interfaces2019, 11, 39292–39303.

    Article  CAS  PubMed  Google Scholar 

  15. Liu, Z.; Zhang, J.; Tang, L.; Zhou, Y.; Lin, Y.; Wang, R.; Kong, J.; Tang, Y.; Gu, J. Improved wave-transparent performances and enhanced mechanical properties for fluoride-containing PBO precursor modified cyanate ester resins and their PBO fibers/cyanate ester composites. Compos. Part B Eng. 2019, 178, 107466.

    Article  CAS  Google Scholar 

  16. Bhanuprakash, L.; Ali, A.; Mokkoth, R.; Varghese, S. Mode I and Mode II interlaminar fracture behavior of E-glass fiber reinforced epoxy composites modified with reduced exfoliated graphite oxide. Polym. Compos.2018, 39, E2506–E2518.

    Article  CAS  Google Scholar 

  17. Mahmood, H.; Vanzetti, L.; Bersani, M.; Pegoretti, A. Mechanical properties and strain monitoring of glass-epoxy composites with graphene-coated fibers. Compos. Part A-Appl. S.2018, 177, 112–123.

    Article  CAS  Google Scholar 

  18. Balkova, R.; Jancar, J.; Cech, V. Effect of RF-plasma deposition parameters on the composition and properties of organic layers deposited on glass fibers. Compos. Sci. Technol.2009, 69, 2485–2490.

    Article  CAS  Google Scholar 

  19. Cech, V.; Knob, A.; Hosein, H. A.; Babik, A.; Lepcio, P.; Ondreas, F.; Drzal, L. T. Enhanced interfacial adhesion of glass fibers by tetravinylsilane plasma modification. Compos. Part A-Appl. S.2014, 58, 84–89.

    Article  CAS  Google Scholar 

  20. Yang, W.; Zhang, Y. R.; Yuen, A. C. Y.; Chen, T. B. Y.; Chan, M. C.; Peng, L. Z.; Yang, W. J.; Zhu, S. E.; Yang, B. H.; Hu, K. H.; Yeoh, G. H.; Lu, H. D. Synthesis of phosphorus-containing silane coupling agent for surface modification of glass fibers: effective reinforcement and flame retardancy in poly(1,4-butylene terephthalate). Chem. Eng. J.2017, 321, 257–267.

    Article  CAS  Google Scholar 

  21. Safi, S.; Zadhoush, A.; Masoomi, M. Effects of chemical surface pretreatment on tensile properties of a single glass fiber and the glass fiber reinforced epoxy composite. Polym. Compos.2016, 37, 91–100.

    Article  CAS  Google Scholar 

  22. Li, S.; Lin, Q.; Zhu, H.; Hou, H.; Li, Y.; Wu, Q.; Cui, C. Improved mechanical properties of epoxy-based composites with hyperbranched polymer grafting glass-fiber. Polym. Adv. Technol. 2016, 27, 898–904.

    Article  CAS  Google Scholar 

  23. Luo, N.; Zhong, H.; Yang, M.; Yuan, X.; Fan, Y. Modifying glass fiber surface with grafting acrylamide by UV-grafting copolymerization for preparation of glass fiber reinforced PVDF composite membrane. J. Environ. Sci.2016, 39, 208–217.

    Article  CAS  Google Scholar 

  24. Asadi, A.; Miller, M.; Moon, R. J.; Kalaitzidou, K. Improving the interfacial and mechanical properties of short glass fiber/epoxy composites by coating the glass fibers with cellulose nanocrystals. Express. Polym. Lett.2016, 10, 587–597.

    Article  CAS  Google Scholar 

  25. Tang, L.; He, M.; Na, X.; Guan, X.; Zhang, R.; Zhang, J.; Gu, J. Functionalized glass fibers cloth/spherical BN fillers/epoxy laminated composites with excellent thermal conductivities and electrical insulation properties. Compos. Commun.2019, 16, 5–10.

    Article  Google Scholar 

  26. Yang, X.; Guo, Y.; Han, Y.; Li, Y.; Ma, T.; Chen, M.; Kong, J.; Gu, J. Significant improvement of thermal conductivities for BNNS/PVA composite films via electrospinning followed by hot-pressing technology. Compos. Part B Eng.2019, 175, 107070.

    Article  CAS  Google Scholar 

  27. Yeo, H.; Islam, A. M., You, N. H.; Ahn, S.; Goh, M.; Hahn, J. R.; Jang, S. G. Characteristic correlation between liquid crystalline epoxy and alumina filler on thermal conducting properties. Compos. Sci. Technol.2017, 141, 99–105.

    Article  CAS  Google Scholar 

  28. Zhang, G. D.; Fan, L.; Bai, L.; He, M. H.; Zhai, L.; Mo, S. Mesoscopic simulation assistant design of immiscible polyimide/BN blend films with enhanced thermal conductivity. Chinese J. Polym. Sci.2018, 36, 1394–1402.

    Article  CAS  Google Scholar 

  29. Yang, X.; Liang, C.; Ma, T.; Guo, Y.; Kong, J.; Gu, J.; Zhu, J. A review on thermally conductive polymeric composites: classification, measurement, model and equations, mechanism and fabrication methods. Adv. Compos. Hybrid. Mater.2018, 1, 207–230.

    Article  Google Scholar 

  30. Ji, C.; Yan, C.; Wang, Y.; Xiong, S.; Zhou, F.; Li, Y.; Sun, R.; Wong, C. P. Thermal conductivity enhancement of CNT/MoS2/graphene-epoxy nanocomposites based on structural synergistic effects and interpenetrating network. Compos. Part B Eng.2019, 163, 363–370.

    Article  CAS  Google Scholar 

  31. Owais, M.; Zhao, J.; Imani, A.; Wang, G.; Zhang, H.; Zhang, Z. Synergetic effect of hybrid fillers of boron nitride, graphene nanoplatelets, and short carbon fibers for enhanced thermal conductivity and electrical resistivity of epoxy nanocomposites. Compos. Part A-Appl. S.2019, 117, 11–22.

    Article  CAS  Google Scholar 

  32. Ruan, K.; Guo, Y.; Tang, Y.; Zhang, Y.; Zhang, J.; He, M.; Kong, J.; Gu, J. Improved thermal conductivities in polystyrene nanocomposites by incorporating thermal reduced graphene oxide via electrospinning-hot press technique. Compos. Commun.2018, 10, 68–72.

    Article  Google Scholar 

  33. Huang, T.; Zhang, G.; Gao, Y. A novel silver nanoparticle-deposited aluminum oxide hybrids for epoxy composites with enhanced thermal conductivity and energy density. Compos. Interfaces2019, 26, 1001–1011.

    Article  CAS  Google Scholar 

  34. Feng, Y.; He, C.; Wen, Y.; Zhou, X.; Xie, X.; Ye, Y.; Mai, Y. W. Multifunctional interface tailoring for enhancing thermal conductivity, flame retardancy and dynamic mechanical property of epoxy/Al2O3 composites. Compos. Sci. Technol.2018, 160, 42–49.

    Article  CAS  Google Scholar 

  35. Yu, C.; Zhang, J.; Li, Z.; Tian, W.; Wang, L.; Luo, J.; Li, Q.; Fan, X.; Yao, Y. Enhanced through-plane thermal conductivity of boron nitride/epoxy composite. Compos. Part A-Appl. S.2017, 98, 25–31.

    Article  CAS  Google Scholar 

  36. Han, J.; Du, G.; Gao, W.; Bai, H. An anisotropically high thermal conductive boron nitride/epoxy composite based on nacre-mimetic 3D network. Adv. Funct. Mater.2019, 29, 1900412.

    Article  CAS  Google Scholar 

  37. Huang, X.; Iizuka, T.; Jiang, P.; Ohki, Y.; Tanaka, T. Role of interface on the thermal conductivity of highly filled dielectric epoxy/AlN composites. J. Phys. Chem. C2012, 116, 13629–13639.

    Article  CAS  Google Scholar 

  38. Chung, S. L.; Lin, J. S. Thermal conductivity of epoxy resin composites filled with combustion-synthesized AlN powder. Polym. Compos.2018, 39, E2125–E2133.

    Article  CAS  Google Scholar 

  39. Xiao, C.; Chen, L.; Tang, Y.; Zhang, X.; Zheng, K.; Tian, X. Enhanced thermal conductivity of silicon carbide nanowires (SiCw)/epoxy resin composite with segregated structure. Compos. Part A-Appl. S.2019, 116, 98–105.

    Article  CAS  Google Scholar 

  40. Ma, T.; Zhao, Y.; Ruan, K.; Liu, X.; Zhang, J.; Guo, Y.; Yang, X.; Kong, J.; Gu, J. Highly thermal conductivities, excellent mechanical robustness and flexibility, and outstanding thermal stabilities of aramid nanofiber composite papers with nacre-mimetic layered structures. ACS Appl. Mater. Interfaces2020, 12, 1677–1686.

    Article  CAS  PubMed  Google Scholar 

  41. Han, Y.; Shi, X.; Yang, X.; Guo, Y.; Zhang, J.; Kong, J.; Gu, J. Enhanced thermal conductivities of epoxy nanocomposites via incorporating in-situ fabricated hetero-structured SiC-BNNS fillers. Compos. Sci. Technol.2020, 187, 107944.

    Article  CAS  Google Scholar 

  42. Hu, J.; Huang, Y.; Yao, Y.; Pan, G.; Sun, J.; Zeng, X.; Sun, R.; Xu, J. B.; Song, B.; Wong, C. P. Polymer composite with improved thermal conductivity by constructing a hierarchically ordered three-dimensional interconnected network of BN. ACS Appl. Mater. Interfaces2017, 9, 13544–13553.

    Article  CAS  PubMed  Google Scholar 

  43. Jiang, Y.; Shi, X.; Feng, Y.; Li, S.; Zhou, X.; Xie, X. Enhanced thermal conductivity and ideal dielectric properties of epoxy composites containing polymer modified hexagonal boron nitride. Compos. Part A-Appl. S.2018, 107, 657–664.

    Article  CAS  Google Scholar 

  44. Yang, X.; Guo, Y.; Luo, X.; Zheng, N.; Ma, T.; Tan, J.; Li, C.; Zhang, Q.; Gu, J. Self-healing, recoverable epoxy elastomers and their composites with desirable thermal conductivities by incorporating BN fillers via in-situ polymerization. Compos. Sci. Technol.2018, 164, 59–64.

    Article  CAS  Google Scholar 

  45. Choi, S.; Yang, J.; Kim, Y.; Nam, J.; Kim, K.; Shim, S. E. Microwave-accelerated synthesis of silica nanoparticle-coated graphite nanoplatelets and properties of their epoxy composites. Compos. Sci. Technol.2014, 103, 8–15.

    Article  CAS  Google Scholar 

  46. Burger, N.; Laachachi, A.; Mortazavi, B.; Ferriol, M.; Lutz, M.; Toniazzo, V.; Ruch, D. Alignments and network of graphite fillers to improve thermal conductivity of epoxy-based composites. Int. J. Heat Mass Tran.2015, 89, 505–513.

    Article  CAS  Google Scholar 

  47. Luo, B.; Wang, X.; Wang, Y.; Li, L. Fabrication, characterization, properties and theoretical analysis of ceramic/PVDF composite flexible films with high dielectric constant and low dielectric loss. J. Mater. Chem. A2014, 2, 510–519.

    Article  CAS  Google Scholar 

  48. Xu, N.; Hu, L.; Zhang, Q.; Xiao, X.; Yang, H.; Yu, E. Significantly enhanced dielectric performance of poly(vinylidene fluoride-co-hexafluoropylene)-based composites filled with hierarchical flower-like TiO2 particles. ACS Appl. Mater. Interfaces2015, 7, 27373–27381.

    Article  CAS  PubMed  Google Scholar 

  49. Wang, Z.; Liu, J.; Cheng, Y.; Chen, S.; Yang, M.; Huang, J.; Wang, H.; Wu, G.; Wu, H. Alignment of boron nitride nanofibers in epoxy composite films for thermal conductivity and dielectric breakdown strength improvement. Nanomaterials2018, 9, 242.

    Article  CAS  Google Scholar 

  50. Chen, S.; Cheng, Y.; Xie, Q.; Xiao, B.; Wang, Z.; Liu, J.; Wu, G. Enhanced breakdown strength of aligned-sodium-titanate-nanowire/epoxy nanocomposites and their anisotropic dielectric properties. Compos. Part A-Appl. S.2019, 120, 84–94.

    Article  CAS  Google Scholar 

  51. Feng, C. P.; Wan, S. S.; Wu, W. C.; Bai, L.; Bao, R. Y.; Liu, Z. Y.; Yang, M. B.; Chen, J.; Yang, W. Electrically insulating, layer structured SiR/GNPs/BN thermal management materials with enhanced thermal conductivity and breakdown voltage. Compos. Sci. Technol.2018, 167, 456–462.

    Article  CAS  Google Scholar 

  52. Yang, X.; Fan, S; Li, Y.; Guo, Y; Li, Y.; Ruan, K.; Zhang, S.; Zhang, J.; Kong, J.; Gu, J. Synchronously improved electromagnetic interference shielding and thermal conductivity for epoxy nanocomposites by constructing 3D copper nanowires/thermally annealed graphene aerogel framework. Compos. Part A-Appl. S.2020, 128, 105670.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51973173 and 51773169), Natural Science Basic Research Plan for Distinguished Young Scholars in Shaanxi Province of China (No. 2019JC-11), and Fundamental Research Funds for the Central Universities (No. 310201911py010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Wei Gu.

Electronic Supplementary Information

10118_2020_2391_MOESM1_ESM.pdf

Thermally Conductive and Insulating Epoxy Composites by Synchronously Incorporating Si-sol Functionalized Glass Fibers and Boron Nitride Fillers

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, RH., Shi, XT., Tang, L. et al. Thermally Conductive and Insulating Epoxy Composites by Synchronously Incorporating Si-sol Functionalized Glass Fibers and Boron Nitride Fillers. Chin J Polym Sci 38, 730–739 (2020). https://doi.org/10.1007/s10118-020-2391-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2391-0

Keywords

Navigation