Abstract
Glass fibers (GFs)/epoxy laminated composites always present weak interlaminar shear strength (ILSS) and low cross-plane thermal conductivity coefficient (λ⊥). In this work, silica-sol, synthesized from tetraethyl orthosilicate (TEOS) and KH-560 via sol-gel method, was employed to functionalize the surface of GFs (Si-GFs). Together with a spherical boron nitride (BNN-30), the thermally conductive BNN-30/Si-GFs/epoxy laminated composites were then fabricated. Results demonstrate that Si-sol is beneficial to the improvement of mechanical properties for epoxy laminated composites (especially for ILSS). The BNN-30/Si-GFs/epoxy laminated composites with 15 wt% BNN-30 fillers display the optimal comprehensive properties. In-plane λ(λ//) and λ⊥ reach the maximum of 2.37 and 1.07 W·m−1·K−1, 146.9% and 132.6% higher than those of Si-GFs/epoxy laminated composites (λ// = 0.96 W·m−1·K−1 and λ⊥ = 0.46 W·m−1·K−1), respectively, and also about 10.8 and 4.9 times those of pure epoxy resin (λ// = λ⊥ 0.22 W·m−1·K−1). And the heat-resistance index (THRI), dielectric constant (ε), dielectric loss (tanδ), breakdown strength (E0), surface resistivity (ρs) as well as volume resistivity (ρv) are 197.3 °C, 4.95, 0.0046, 22.3 kV·mm−1, 1.8 × 1014Ω, and 2.1 × 1014Ω·cm, respectively.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Yang, X. L.; Li, K.; Xu, M. Z.; Liu, X. B. Designing a phthalonitrile/benzoxazine blend for the advanced GFRP composite material. Chinese J. Polym. Sci.2018, 36, 106–112.
Xu, X.; Zhang, Y.; Jiang, J.; Wang, H.; Zhao, X.; Li, Q.; Lu, W. In-situ curing of glass fiber reinforced polymer composites via resistive heating of carbon nanotube films. Compos. Sci. Technol.2017, 149, 20–27.
Agrawal, S.; Singh, K. K.; Sarkar, P. K. A comparative study of wear and friction characteristics of glass fibre reinforced epoxy resin, sliding under dry, oil-lubricated and inert gas environments. Tribol. Int.2016, 96, 217–224.
Park, D. W.; Oh, G. H.; Kim, H. S. Predicting the stacking sequence of E-glass fiber reinforced polymer (GFRP) epoxy composite using terahertz time-domain spectroscopy (THz-TDS) system. Compos. Part B Eng.2017, 177, 107385.
Shahkhosravi, N. A.; Yousefi, J.; Najafabadi, M. A.; Burvill, C.; Minak, G. Fatigue life reduction of GFRP composites due to delamination associated with the introduction of functional discontinuities. Compos. Part B Eng.2019, 163, 536–547.
Rahmat, M.; Ashrafi, B.; Naftel, A.; Djokic, D.; Martinez-Rubi, Y.; Jakubinek, M. B.; Simard, B. Enhanced shear performance of hybrid glass fiber-epoxy laminates modified with boron nitride nanotubes. ACS Appl. Nano Mater.2018, 1, 2709–2717.
Gu, S. L.; Liu, H. H.; Cao, H.; Mercier, C.; Li, Y. J. Investigations on the interactions between Li-TFSI and glass fibers in the ternary PP/GF/Li-TFSI composites. Chinese J. Polym. Sci.2018, 36, 113–118.
Halder, S.; Ahemad, S.; Das, S.; Wang, J. Epoxy/glass fiber laminated composites integrated with amino functionalized ZrO2 for advanced structural applications. ACS Appl. Mater. Interfaces2016, 8, 1695–1706.
Slobodian, P.; Lloret, Pertegás S.; Riha, P.; Matyas, J.; Olejnik, R.; Schledjewski, R.; Kovar, M. Glass fiber/epoxy composites with integrated layer of carbon nanotubes for deformation detection. Compos. Sci. Technol.2018, 156, 61–69.
Tang, Y.; Gu, J.; Yu, Y.; Kong, J. Preparation of POSS/quartz fibers/cyanate ester resins laminated composites. Pylym. Compos.2015, 36, 2017–2021.
Zhang, L. X.; Chang, Q.; Sun, Z.; Zhang, J. J.; Qi, J. L.; Feng, J. C. Wetting of AgCuTi alloys on quartz fiber reinforced composite modified by vertically aligned carbon nanotubes. Carbon2019, 154, 375–383.
Alsaadi, M.; Bulut, M.; Erklig, A.; Jabbar, A. Nano-silica inclusion effects on mechanical and dynamic behavior of fiber reinforced carbon/Kevlar with epoxy resin hybrid composites. Compos. Part B Eng.2018, 152, 169–179.
Tang, L.; Dang, J.; He, M.; Li, J.; Kong, J.; Tang, Y.; Gu, J. Preparation and properties of cyanate-based wave-transparent laminated composites reinforced by dopamine/POSS functionalized Kevlar cloth. Compos. Sci. Technol.2019, 169, 120–126.
Yu, L.; Lu, F.; Huang, X.; Liu, Y.; Li, M.; Pan, H.; Wu, L.; Huang, Y.; Hu, Z. Facile interface design strategy for improving the uvioresistant and self-healing properties of poly(p-phenylene benzobisoxazole) fibers. ACS Appl. Mater. Interfaces2019, 11, 39292–39303.
Liu, Z.; Zhang, J.; Tang, L.; Zhou, Y.; Lin, Y.; Wang, R.; Kong, J.; Tang, Y.; Gu, J. Improved wave-transparent performances and enhanced mechanical properties for fluoride-containing PBO precursor modified cyanate ester resins and their PBO fibers/cyanate ester composites. Compos. Part B Eng. 2019, 178, 107466.
Bhanuprakash, L.; Ali, A.; Mokkoth, R.; Varghese, S. Mode I and Mode II interlaminar fracture behavior of E-glass fiber reinforced epoxy composites modified with reduced exfoliated graphite oxide. Polym. Compos.2018, 39, E2506–E2518.
Mahmood, H.; Vanzetti, L.; Bersani, M.; Pegoretti, A. Mechanical properties and strain monitoring of glass-epoxy composites with graphene-coated fibers. Compos. Part A-Appl. S.2018, 177, 112–123.
Balkova, R.; Jancar, J.; Cech, V. Effect of RF-plasma deposition parameters on the composition and properties of organic layers deposited on glass fibers. Compos. Sci. Technol.2009, 69, 2485–2490.
Cech, V.; Knob, A.; Hosein, H. A.; Babik, A.; Lepcio, P.; Ondreas, F.; Drzal, L. T. Enhanced interfacial adhesion of glass fibers by tetravinylsilane plasma modification. Compos. Part A-Appl. S.2014, 58, 84–89.
Yang, W.; Zhang, Y. R.; Yuen, A. C. Y.; Chen, T. B. Y.; Chan, M. C.; Peng, L. Z.; Yang, W. J.; Zhu, S. E.; Yang, B. H.; Hu, K. H.; Yeoh, G. H.; Lu, H. D. Synthesis of phosphorus-containing silane coupling agent for surface modification of glass fibers: effective reinforcement and flame retardancy in poly(1,4-butylene terephthalate). Chem. Eng. J.2017, 321, 257–267.
Safi, S.; Zadhoush, A.; Masoomi, M. Effects of chemical surface pretreatment on tensile properties of a single glass fiber and the glass fiber reinforced epoxy composite. Polym. Compos.2016, 37, 91–100.
Li, S.; Lin, Q.; Zhu, H.; Hou, H.; Li, Y.; Wu, Q.; Cui, C. Improved mechanical properties of epoxy-based composites with hyperbranched polymer grafting glass-fiber. Polym. Adv. Technol. 2016, 27, 898–904.
Luo, N.; Zhong, H.; Yang, M.; Yuan, X.; Fan, Y. Modifying glass fiber surface with grafting acrylamide by UV-grafting copolymerization for preparation of glass fiber reinforced PVDF composite membrane. J. Environ. Sci.2016, 39, 208–217.
Asadi, A.; Miller, M.; Moon, R. J.; Kalaitzidou, K. Improving the interfacial and mechanical properties of short glass fiber/epoxy composites by coating the glass fibers with cellulose nanocrystals. Express. Polym. Lett.2016, 10, 587–597.
Tang, L.; He, M.; Na, X.; Guan, X.; Zhang, R.; Zhang, J.; Gu, J. Functionalized glass fibers cloth/spherical BN fillers/epoxy laminated composites with excellent thermal conductivities and electrical insulation properties. Compos. Commun.2019, 16, 5–10.
Yang, X.; Guo, Y.; Han, Y.; Li, Y.; Ma, T.; Chen, M.; Kong, J.; Gu, J. Significant improvement of thermal conductivities for BNNS/PVA composite films via electrospinning followed by hot-pressing technology. Compos. Part B Eng.2019, 175, 107070.
Yeo, H.; Islam, A. M., You, N. H.; Ahn, S.; Goh, M.; Hahn, J. R.; Jang, S. G. Characteristic correlation between liquid crystalline epoxy and alumina filler on thermal conducting properties. Compos. Sci. Technol.2017, 141, 99–105.
Zhang, G. D.; Fan, L.; Bai, L.; He, M. H.; Zhai, L.; Mo, S. Mesoscopic simulation assistant design of immiscible polyimide/BN blend films with enhanced thermal conductivity. Chinese J. Polym. Sci.2018, 36, 1394–1402.
Yang, X.; Liang, C.; Ma, T.; Guo, Y.; Kong, J.; Gu, J.; Zhu, J. A review on thermally conductive polymeric composites: classification, measurement, model and equations, mechanism and fabrication methods. Adv. Compos. Hybrid. Mater.2018, 1, 207–230.
Ji, C.; Yan, C.; Wang, Y.; Xiong, S.; Zhou, F.; Li, Y.; Sun, R.; Wong, C. P. Thermal conductivity enhancement of CNT/MoS2/graphene-epoxy nanocomposites based on structural synergistic effects and interpenetrating network. Compos. Part B Eng.2019, 163, 363–370.
Owais, M.; Zhao, J.; Imani, A.; Wang, G.; Zhang, H.; Zhang, Z. Synergetic effect of hybrid fillers of boron nitride, graphene nanoplatelets, and short carbon fibers for enhanced thermal conductivity and electrical resistivity of epoxy nanocomposites. Compos. Part A-Appl. S.2019, 117, 11–22.
Ruan, K.; Guo, Y.; Tang, Y.; Zhang, Y.; Zhang, J.; He, M.; Kong, J.; Gu, J. Improved thermal conductivities in polystyrene nanocomposites by incorporating thermal reduced graphene oxide via electrospinning-hot press technique. Compos. Commun.2018, 10, 68–72.
Huang, T.; Zhang, G.; Gao, Y. A novel silver nanoparticle-deposited aluminum oxide hybrids for epoxy composites with enhanced thermal conductivity and energy density. Compos. Interfaces2019, 26, 1001–1011.
Feng, Y.; He, C.; Wen, Y.; Zhou, X.; Xie, X.; Ye, Y.; Mai, Y. W. Multifunctional interface tailoring for enhancing thermal conductivity, flame retardancy and dynamic mechanical property of epoxy/Al2O3 composites. Compos. Sci. Technol.2018, 160, 42–49.
Yu, C.; Zhang, J.; Li, Z.; Tian, W.; Wang, L.; Luo, J.; Li, Q.; Fan, X.; Yao, Y. Enhanced through-plane thermal conductivity of boron nitride/epoxy composite. Compos. Part A-Appl. S.2017, 98, 25–31.
Han, J.; Du, G.; Gao, W.; Bai, H. An anisotropically high thermal conductive boron nitride/epoxy composite based on nacre-mimetic 3D network. Adv. Funct. Mater.2019, 29, 1900412.
Huang, X.; Iizuka, T.; Jiang, P.; Ohki, Y.; Tanaka, T. Role of interface on the thermal conductivity of highly filled dielectric epoxy/AlN composites. J. Phys. Chem. C2012, 116, 13629–13639.
Chung, S. L.; Lin, J. S. Thermal conductivity of epoxy resin composites filled with combustion-synthesized AlN powder. Polym. Compos.2018, 39, E2125–E2133.
Xiao, C.; Chen, L.; Tang, Y.; Zhang, X.; Zheng, K.; Tian, X. Enhanced thermal conductivity of silicon carbide nanowires (SiCw)/epoxy resin composite with segregated structure. Compos. Part A-Appl. S.2019, 116, 98–105.
Ma, T.; Zhao, Y.; Ruan, K.; Liu, X.; Zhang, J.; Guo, Y.; Yang, X.; Kong, J.; Gu, J. Highly thermal conductivities, excellent mechanical robustness and flexibility, and outstanding thermal stabilities of aramid nanofiber composite papers with nacre-mimetic layered structures. ACS Appl. Mater. Interfaces2020, 12, 1677–1686.
Han, Y.; Shi, X.; Yang, X.; Guo, Y.; Zhang, J.; Kong, J.; Gu, J. Enhanced thermal conductivities of epoxy nanocomposites via incorporating in-situ fabricated hetero-structured SiC-BNNS fillers. Compos. Sci. Technol.2020, 187, 107944.
Hu, J.; Huang, Y.; Yao, Y.; Pan, G.; Sun, J.; Zeng, X.; Sun, R.; Xu, J. B.; Song, B.; Wong, C. P. Polymer composite with improved thermal conductivity by constructing a hierarchically ordered three-dimensional interconnected network of BN. ACS Appl. Mater. Interfaces2017, 9, 13544–13553.
Jiang, Y.; Shi, X.; Feng, Y.; Li, S.; Zhou, X.; Xie, X. Enhanced thermal conductivity and ideal dielectric properties of epoxy composites containing polymer modified hexagonal boron nitride. Compos. Part A-Appl. S.2018, 107, 657–664.
Yang, X.; Guo, Y.; Luo, X.; Zheng, N.; Ma, T.; Tan, J.; Li, C.; Zhang, Q.; Gu, J. Self-healing, recoverable epoxy elastomers and their composites with desirable thermal conductivities by incorporating BN fillers via in-situ polymerization. Compos. Sci. Technol.2018, 164, 59–64.
Choi, S.; Yang, J.; Kim, Y.; Nam, J.; Kim, K.; Shim, S. E. Microwave-accelerated synthesis of silica nanoparticle-coated graphite nanoplatelets and properties of their epoxy composites. Compos. Sci. Technol.2014, 103, 8–15.
Burger, N.; Laachachi, A.; Mortazavi, B.; Ferriol, M.; Lutz, M.; Toniazzo, V.; Ruch, D. Alignments and network of graphite fillers to improve thermal conductivity of epoxy-based composites. Int. J. Heat Mass Tran.2015, 89, 505–513.
Luo, B.; Wang, X.; Wang, Y.; Li, L. Fabrication, characterization, properties and theoretical analysis of ceramic/PVDF composite flexible films with high dielectric constant and low dielectric loss. J. Mater. Chem. A2014, 2, 510–519.
Xu, N.; Hu, L.; Zhang, Q.; Xiao, X.; Yang, H.; Yu, E. Significantly enhanced dielectric performance of poly(vinylidene fluoride-co-hexafluoropylene)-based composites filled with hierarchical flower-like TiO2 particles. ACS Appl. Mater. Interfaces2015, 7, 27373–27381.
Wang, Z.; Liu, J.; Cheng, Y.; Chen, S.; Yang, M.; Huang, J.; Wang, H.; Wu, G.; Wu, H. Alignment of boron nitride nanofibers in epoxy composite films for thermal conductivity and dielectric breakdown strength improvement. Nanomaterials2018, 9, 242.
Chen, S.; Cheng, Y.; Xie, Q.; Xiao, B.; Wang, Z.; Liu, J.; Wu, G. Enhanced breakdown strength of aligned-sodium-titanate-nanowire/epoxy nanocomposites and their anisotropic dielectric properties. Compos. Part A-Appl. S.2019, 120, 84–94.
Feng, C. P.; Wan, S. S.; Wu, W. C.; Bai, L.; Bao, R. Y.; Liu, Z. Y.; Yang, M. B.; Chen, J.; Yang, W. Electrically insulating, layer structured SiR/GNPs/BN thermal management materials with enhanced thermal conductivity and breakdown voltage. Compos. Sci. Technol.2018, 167, 456–462.
Yang, X.; Fan, S; Li, Y.; Guo, Y; Li, Y.; Ruan, K.; Zhang, S.; Zhang, J.; Kong, J.; Gu, J. Synchronously improved electromagnetic interference shielding and thermal conductivity for epoxy nanocomposites by constructing 3D copper nanowires/thermally annealed graphene aerogel framework. Compos. Part A-Appl. S.2020, 128, 105670.
Acknowledgments
This work was financially supported by the National Natural Science Foundation of China (Nos. 51973173 and 51773169), Natural Science Basic Research Plan for Distinguished Young Scholars in Shaanxi Province of China (No. 2019JC-11), and Fundamental Research Funds for the Central Universities (No. 310201911py010).
Author information
Authors and Affiliations
Corresponding author
Electronic Supplementary Information
10118_2020_2391_MOESM1_ESM.pdf
Thermally Conductive and Insulating Epoxy Composites by Synchronously Incorporating Si-sol Functionalized Glass Fibers and Boron Nitride Fillers
Rights and permissions
About this article
Cite this article
Zhang, RH., Shi, XT., Tang, L. et al. Thermally Conductive and Insulating Epoxy Composites by Synchronously Incorporating Si-sol Functionalized Glass Fibers and Boron Nitride Fillers. Chin J Polym Sci 38, 730–739 (2020). https://doi.org/10.1007/s10118-020-2391-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10118-020-2391-0