Skip to main content

Natural Biopolymers for Flexible Sensing and Energy Devices

Abstract

Natural biopolymers feature natural abundance, diverse chemical compositions, tunable properties, easy processability, excellent biocompatibility and biodegradability, as well as nontoxicity, providing new opportunities for the development of flexible sensing and energy devices. Generally, biopolymers are utilized as the passive and active building blocks to endow the flexible devices with mechanical robustness and good biocompatibility. This review aims to provide a comprehensive review on natural biopolymer-based sensing and energy devices. The diverse structures and fabrication processes of three typical biopolymers, including silk, cellulose, and chitin/chitosan, are presented. We review their utilities as the supporting substrates/matrix, active middle layers, separators, electrolytes, and active components of flexible sensing devices (sensors, actuators, transistors) and energy devices (batteries, supercapacitors, triboelectric nanogenerators). Finally, the remaining challenges and future research opportunities are discussed.

This is a preview of subscription content, access via your institution.

References

  1. Fukagawa, H.; Sasaki, T.; Tsuzuki, T.; Nakajima, Y.; Takei, T.; Motomura, G.; Hasegawa, M.; Morii, K.; Shimizu, T. Long-lived flexible displays employing efficient and stable inverted organic light-emitting diodes. Adv. Mater.2018, 30, 1706768.

    Google Scholar 

  2. Khan, Y.; Ostfeld, A. E.; Lochner, C. M.; Pierre, A.; Arias, A. C. Monitoring of vital signs with flexible and wearable medical devices. Adv. Mater.2016, 28, 4373–4395.

    CAS  PubMed  Google Scholar 

  3. Shi, J.; Liu, S.; Zhang, L.; Yang, B.; Shu, L.; Yang, Y.; Ren, M.; Wang, Y.; Chen, J.; Chen, W.; Chai, Y.; Tao, X. Smart textile-integrated microelectronic systems for wearable applications. Adv. Mater. 2019, 31, 1901958.

    Google Scholar 

  4. Wang, C.; Xia, K.; Wang, H.; Liang, X.; Yin, Z.; Zhang, Y. Advanced carbon for flexible and wearable electronics. Adv. Mater. 2019, 31, 1801072.

    Google Scholar 

  5. Baik, S.; Lee, H. J.; Kim, D. W.; Kim, J. W.; Lee, Y.; Pang, C. Bioinspired adhesive architectures: from skin patch to integrated bioelectronics. Adv. Mater.2019, 31, 1803309.

    Google Scholar 

  6. Jung, Y. H.; Park, B.; Kim, J. U.; Kim, T. I. Bioinspired electronics for artificial sensory systems. Adv. Mater.2019, 31, 1803637.

    Google Scholar 

  7. Hong, Y. J.; Jeong, H.; Cho, K. W.; Lu, N.; Kim, D. H. Wearable and implantable devices for cardiovascular healthcare: from monitoring to therapy based on flexible and stretchable electronics. Adv. Funct. Mater.2019, 29, 1808247.

    Google Scholar 

  8. Xu, S.; Jayaraman, A.; Rogers, J. A. Skin sensors are the future of health care. Nature2019, 571, 319–321.

    CAS  PubMed  Google Scholar 

  9. Jian, M.; Wang, C.; Wang, Q.; Wang, H.; Xia, K.; Yin, Z.; Zhang, M.; Liang, X.; Zhang, Y. Advanced carbon materials for flexible and wearable sensors. Sci. China Mater.2017, 60, 1026–1062.

    CAS  Google Scholar 

  10. Ren, H.; Zheng, L.; Wang, G.; Gao, X.; Tan, Z.; Shan, J.; Cui, L.; Li, K.; Jian, M.; Zhu, L.; Zhang, Y.; Peng, H.; Wei, D.; Liu, Z. Transfer-medium-free nanofiber-reinforced graphene film and applications in wearable transparent pressure sensors. ACS Nano2019, 13, 5541–5548.

    CAS  PubMed  Google Scholar 

  11. Jang, H.; Park, Y. J.; Chen, X.; Das, T.; Kim, M. S.; Ahn, J. H. Graphene-based flexible and stretchable electronics. Adv. Mater.2016, 28, 4184–4202.

    CAS  PubMed  Google Scholar 

  12. Segev-Bar, M.; Haick, H. Flexible sensors based on nanoparticles. ACS Nano2013, 7, 8366–8378.

    CAS  PubMed  Google Scholar 

  13. Liu, Z.; Xu, J.; Chen, D.; Shen, G. Flexible electronics based on inorganic nanowires. Chem. Soc. Rev.2015, 44, 161–192.

    CAS  PubMed  Google Scholar 

  14. Yu, X.; Marks, T. J.; Facchetti, A. Metal oxides for optoelectronic applications. Nat. Mater.2016, 15, 383–396.

    CAS  PubMed  Google Scholar 

  15. Root, S. E.; Savagatrup, S.; Printz, A. D.; Rodriquez, D.; Lipomi, D. J. Mechanical properties of organic semiconductors for stretchable, highly flexible, and mechanically robust electronics. Chem. Rev.2017, 117, 6467–6499.

    CAS  PubMed  Google Scholar 

  16. Liu, H.; Li, Q.; Zhang, S.; Yin, R.; Liu, X.; He, Y.; Dai, K.; Shan, C.; Guo, J.; Liu, C.; Shen, C.; Wang, X.; Wang, N.; Wang, Z.; Wei, R.; Guo, Z. Electrically conductive polymer composites for smart flexible strain sensors: a critical review. J. Mater. Chem. C2018, 6, 12121–12141.

    CAS  Google Scholar 

  17. Liu, W.; Song, M. S.; Kong, B.; Cui, Y. Flexible and stretchable energy storage: recent advances and future perspectives. Adv. Mater.2017, 29, 1603436.

    Google Scholar 

  18. Cheng, X.; Pan, J.; Zhao, Y.; Liao, M.; Peng, H. Gel polymer electrolytes for electrochemical energy storage. Adv. Energy Mater.2018, 8, 1702184.

    Google Scholar 

  19. Shi, Y.; Peng, L.; Ding, Y.; Zhao, Y.; Yu, G. Nanostructured conductive polymers for advanced energy storage. Chem. Soc. Rev.2015, 44, 6684–6696.

    CAS  PubMed  Google Scholar 

  20. Chandrashekar, B. N.; Deng, B.; Smitha, A. S.; Chen, Y.; Tan, C.; Zhang, H.; Peng, H.; Liu, Z. Roll-to-roll green transfer of CVD graphene onto plastic for a transparent and flexible triboelectric nanogenerator. Adv. Mater.2015, 27, 5210–5216.

    CAS  PubMed  Google Scholar 

  21. Wen, L.; Li, F.; Cheng, H. M. Carbon nanotubes and graphene for flexible electrochemical energy storage: from materials to devices. Adv. Mater.2016, 28, 4306–4337.

    CAS  PubMed  Google Scholar 

  22. Wu, Z.; Wang, Y.; Liu, X.; Lv, C.; Li, Y.; Wei, D.; Liu, Z. Carbon-nanomaterial-based flexible batteries for wearable electronics. Adv. Mater.2019, 31, 1800716.

    Google Scholar 

  23. Chen, K.; Shi, L.; Zhang, Y.; Liu, Z. Scalable chemical-vapour-deposition growth of three-dimensional graphene materials towards energy-related applications. Chem. Soc. Rev. 2018, 47, 3018–3036.

    CAS  PubMed  Google Scholar 

  24. Yu, L.; Yi, Y.; Yao, T.; Song, Y.; Chen, Y.; Li, Q.; Xia, Z.; Wei, N.; Tian, Z.; Nie, B.; Zhang, L.; Liu, Z.; Sun, J. All VN-graphene architecture derived self-powered wearable sensors for ultrasensitive health monitoring. Nano Res.2018. 12, 331–338.

    Google Scholar 

  25. Guan, C.; Zhao, W.; Hu, Y.; Ke, Q.; Li, X.; Zhang, H.; Wang, J. High-performance flexible solid-state Ni/Fe battery consisting of metal oxides coated carbon cloth/carbon nanofiber electrodes. Adv. Energy Mater.2016. 6, 1601034.

    Google Scholar 

  26. Pang, J.; Bachmatiuk, A.; Yin, Y.; Trzebicka, B.; Zhao, L.; Fu, L.; Mendes, R. G.; Gemming, T.; Liu, Z.; Rummeli, M. H. Applications of phosphorene and black phosphorus in energy conversion and storage devices. Adv. Energy Mater.2018. 8, 1702093.

    Google Scholar 

  27. Pang, J.; Mendes, R. G.; Bachmatiuk, A.; Zhao, L.; Ta, H. Q.; Gemming, T.; Liu, H.; Liu, Z.; Rummeli, M. H. Applications of 2D Mxenes in energy conversion and storage systems. Chem. Soc. Rev.2019. 48, 72–133.

    CAS  PubMed  Google Scholar 

  28. Yi, F.; Ren, H.; Shan, J.; Sun, X.; Wei, D.; Liu, Z. Wearable energy sources based on 2D materials. Chem. Soc. Rev.2018, 47, 3152–3188.

    CAS  PubMed  Google Scholar 

  29. Yang, Q.; Wang, Y.; Li, X.; Li, H.; Wang, Z.; Tang, Z.; Ma, L.; Mo, F.; Zhi, C. Recent progress of Mxene-based nanomaterials in flexible energy storage and electronic devices. Energy Environ. Mater.2018, 1, 183–195.

    Google Scholar 

  30. Li, Y. C. E. Sustainable biomass materials for biomedical applications. ACS Biomater. Sci. Eng.2019, 5, 2079–2092.

    CAS  Google Scholar 

  31. Wang, L.; Chen, D.; Jiang, K.; Shen, G. New insights and perspectives into biological materials for flexible electronics. Chem. Soc. Rev.2017, 46, 6764–6815.

    CAS  PubMed  Google Scholar 

  32. Zhao, S.; Malfait, W. J.; Guerrero-Alburquerque, N.; Koebel, M. M.; Nystrom, G. Biopolymer aerogels and foams: chemistry, properties, and applications. Angew. Chem. Int. Ed.2018, 57, 7580–7608.

    CAS  Google Scholar 

  33. Moon, R. J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev.2011, 40, 3941–3994.

    CAS  PubMed  Google Scholar 

  34. Rockwood, D. N.; Preda, R. C.; Yucel, T.; Wang, X.; Lovett, M. L.; Kaplan, D. L. Materials fabrication from Bombyx mori silk fibroin. Nat. Protoc.2011, 6, 1612–1631.

    CAS  PubMed  Google Scholar 

  35. Ling, S.; Chen, W.; Fan, Y.; Zheng, K.; Jin, K.; Yu, H.; Buehler, M. J.; Kaplan, D. L. Biopolymer nanofibrils: structure, modeling, preparation, and applications. Prog. Polym. Sci.2018, 85, 1–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Talebian, S.; Foroughi, J.; Wade, S. J.; Vine, K. L.; Dolatshahi-Pirouz, A.; Mehrali, M.; Conde, J.; Wallace, G. G. Biopolymers for antitumor implantable drug delivery systems: recent advances and future outlook. Adv. Mater.2018, 30, 1706665.

    Google Scholar 

  37. Park, S. B.; Lih, E.; Park, K. S.; Joung, Y. K.; Han, D. K. Biopolymer-based functional composites for medical applications. Prog. Polym. Sci.2017, 68, 77–105.

    CAS  Google Scholar 

  38. Zhu, B.; Wang, H.; Leow, W. R.; Cai, Y.; Loh, X. J.; Han, M. Y.; Chen, X. Silk fibroin for flexible electronic devices. Adv. Mater. 2016, 28, 4250–4265.

    CAS  PubMed  Google Scholar 

  39. Sun, Q.; Qian, B.; Uto, K.; Chen, J.; Liu, X.; Minari, T. Functional biomaterials towards flexible electronics and sensors. Biosens. Bioelectron.2018, 119, 237–251.

    CAS  PubMed  Google Scholar 

  40. Suginta, W.; Khunkaewla, P.; Schulte, A. Electrochemical biosensor applications of polysaccharides chitin and chitosan. Chem. Rev.2013, 113, 5458–5479.

    CAS  PubMed  Google Scholar 

  41. Chen, C.; Hu, L. Nanocellulose toward advanced energy storage devices: structure and electrochemistry. Acc. Chem. Res. 2018, 51, 3154–3165.

    CAS  PubMed  Google Scholar 

  42. Zhu, H.; Luo, W.; Ciesielski, P. N.; Fang, Z.; Zhu, J. Y.; Henriksson, G.; Himmel, M. E.; Hu, L. Wood-derived materials for green electronics, biological devices, and energy applications. Chem. Rev.2016, 116, 9305–9374.

    CAS  PubMed  Google Scholar 

  43. Azuma, K.; Izumi, R.; Osaki, T.; Ifuku, S.; Morimoto, M.; Saimoto, H.; Minami, S.; Okamoto, Y. Chitin, chitosan, and its derivatives for wound healing: old and new materials. J. Funct. Biomater.2015, 6, 104–142.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Yao, B.; Zhang, J.; Kou, T.; Song, Y.; Liu, T.; Li, Y. Paper-based electrodes for flexible energy storage devices. Adv. Sci.2017, 4, 1700107.

    PubMed  PubMed Central  Google Scholar 

  45. Gao, M.; Shih, C. C.; Pan, S. Y.; Chueh, C. C.; Chen, W. C. Advances and challenges of green materials for electronics and energy storage applications: from design to end-of-life recovery. J. Mater. Chem. A2018, 6, 20546–20563.

    CAS  Google Scholar 

  46. Omenetto, F. G.; Kaplan, D. L. New opportunities for an ancient material. Science2010, 329, 528–531.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Ling, S.; Kaplan, D. L.; Buehler, M. J. Nanofibrils in nature and materials engineering. Nat. Rev. Mater.2018, 3, 18016.

  48. Niu, Q.; Peng, Q.; Lu, L.; Fan, S.; Shao, H.; Zhang, H.; Wu, R.; Hsiao, B. S.; Zhang, Y. Single molecular layer of silk nanoribbon as potential basic building block of silk materials. ACS Nano2018, 12, 11860–11870.

    CAS  PubMed  Google Scholar 

  49. Keten, S.; Xu, Z.; Ihle, B.; Buehler, M. J. Nanoconfinement controls stiffness, strength and mechanical toughness of β-sheet crystals in silk. Nat. Mater.2010, 9, 359–367.

    CAS  PubMed  Google Scholar 

  50. Koh, L. D.; Cheng, Y.; Teng, C. P.; Khin, Y. W.; Loh, X. J.; Tee, S. Y.; Low, M.; Ye, E.; Yu, H. D.; Zhang, Y. W.; Han, M. Y. Structures, mechanical properties and applications of silk fibroin materials. Prog. Polym. Sci.2015, 46, 86–110.

    CAS  Google Scholar 

  51. Tan, M. J.; Owh, C.; Chee, P. L.; Kyaw, A. K. K.; Kai, D.; Loh, X. J. Biodegradable electronics: cornerstone for sustainable electronics and transient applications. J. Mater. Chem. C2016, 4, 5531–5558.

    CAS  Google Scholar 

  52. Aigner, T. B.; DeSimone, E.; Scheibel, T. Biomedical applications of recombinant silk-based materials. Adv. Mater. 2018, 30, 1704636.

    Google Scholar 

  53. Huang, W.; Ling, S.; Li, C.; Omenetto, F. G.; Kaplan, D. L. Silkworm silk-based materials and devices generated using bio-nanotechnology. Chem. Soc. Rev.2018, 47, 6486–6504.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Koeppel, A.; Holland, C. Progress and trends in artificial silk spinning: a systematic review. ACS Biomater. Sci. Eng. 2017, 3, 226–237.

    CAS  Google Scholar 

  55. Wang, C.; Wu, S.; Jian, M.; Xie, J.; Xu, L.; Yang, X.; Zheng, Q.; Zhang, Y. Silk nanofibers as high efficient and lightweight air filter. Nano Res.2016, 9, 2590–2597.

    Google Scholar 

  56. Shang, L.; Yu, Y.; Liu, Y.; Chen, Z.; Kong, T.; Zhao, Y. Spinning and applications of bioinspired fiber systems. ACS Nano2019, 13, 2749–2772.

    CAS  PubMed  Google Scholar 

  57. Liu, Y.; Ren, J.; Ling, S. Bioinspired and biomimetic silk spinning. Compos. Commun.2019, 13, 85–96.

    Google Scholar 

  58. Lammel, A. S.; Hu, X.; Park, S. H.; Kaplan, D. L.; Scheibel, T. R. Controlling silk fibroin particle features for drug delivery. Biomaterials2010, 31, 4583–4591.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Ling, S.; Li, C.; Adamcik, J.; Shao, Z.; Chen, X.; Mezzenga, R. Modulating materials by orthogonally oriented β-strands: composites of amyloid and silk fibroin fibrils. Adv. Mater.2014, 26, 4569–4574.

    CAS  PubMed  Google Scholar 

  60. Ling, S.; Qin, Z.; Li, C.; Huang, W.; Kaplan, D. L.; Buehler, M. J. Polymorphic regenerated silk fibers assembled through bioinspired spinning. Nat. Commun.2017, 8, 1387.

  61. Ling, S.; Jin, K.; Kaplan, D. L.; Buehler, M. J. Ultrathin freestanding Bombyx mori silk nanofibril membranes. Nano Lett. 2016, 16, 3795–3800.

    CAS  PubMed  Google Scholar 

  62. Partlow, B. P.; Hanna, C. W.; Rnjak-Kovacina, J.; Moreau, J. E.; Applegate, M. B.; Burke, K. A.; Marelli, B.; Mitropoulos, A. N.; Omenetto, F. G.; Kaplan, D. L. Highly tunable elastomeric silk biomaterials. Adv. Funct. Mater.2014, 24, 4615–4624.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang, Y.; Guo, J.; Zhou, L.; Ye, C.; Omenetto, F. G.; Kaplan, D. L.; Ling, S. Design, fabrication, and function of silk-based nanomaterials. Adv. Funct. Mater.2018, 28, 1805305.

    Google Scholar 

  64. Xu, S.; Song, J.; Morikawa, H.; Chen, Y.; Lin, H. Fabrication of hierarchical structured Fe3O4 and Ag nanoparticles dual-coated silk fibers through electrostatic self-assembly. Mater. Lett.2016, 164, 274–277.

    CAS  Google Scholar 

  65. Zhang, M.; Wang, C.; Wang, Q.; Jian, M.; Zhang, Y. Sheath-core graphite/silk fiber made by dry-Meyer-rod-coating for wearable strain sensors. ACS Appl. Mater. Interfaces2016, 8, 20894–20899.

    CAS  PubMed  Google Scholar 

  66. Wu, R.; Ma, L.; Hou, C.; Meng, Z.; Guo, W.; Yu, W.; Yu, R.; Hu, F.; Liu, X. Y. Silk composite electronic textile sensor for high space precision 2D combo temperature-pressure sensing. Small2019, 15, 1901558.

    Google Scholar 

  67. Ryan, J. D.; Mengistie, D. A.; Gabrielsson, R.; Lund, A.; Muller, C. Machine-washable PEDOT:PSS dyed silk yarns for electronic textiles. ACS Appl. Mater. Interfaces2017, 9, 9045–9050.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Chen, J.; Venkatesan, H.; Hu, J. Chemically modified silk proteins. Adv. Eng. Mater.2018, 20, 1700961.

    Google Scholar 

  69. Tansil, N. C.; Li, Y.; Teng, C. P.; Zhang, S.; Win, K. Y.; Chen, X.; Liu, X. Y.; Han, M. Y. Intrinsically colored and luminescent silk. Adv. Mater.2011, 23, 1463–1466.

    CAS  PubMed  Google Scholar 

  70. Cai, L.; Shao, H.; Hu, X.; Zhang, Y. Reinforced and ultraviolet resistant silks from silkworms fed with titanium dioxide nanoparticles. ACS Sustain. Chem. Eng.2015, 3, 2551–2557.

    CAS  Google Scholar 

  71. Yan, M.; Ma, X.; Yang, Y.; Wang, X.; Cheong, W. C.; Chen, Z.; Xu, X.; Huang, Y.; Wang, S.; Lian, C.; Li, Y. Biofabrication strategy for functional fabrics. Nano Lett.2018, 18, 6017–6021.

    CAS  PubMed  Google Scholar 

  72. Wang, J. T.; Li, L. L.; Zhang, M. Y.; Liu, S. L.; Jiang, L. H.; Shen, Q. Directly obtaining high strength silk fiber from silkworm by feeding carbon nanotubes. Mater. Sci. Eng. C Mater. Biol. Ap pl.2014, 34, 417–421.

    CAS  Google Scholar 

  73. Wang, Q.; Wang, C.; Zhang, M.; Jian, M.; Zhang, Y. Feeding single-walled carbon nanotubes or graphene to silkworms for reinforced silk fibers. Nano Lett.2016, 16, 6695–6700.

    CAS  PubMed  Google Scholar 

  74. Cho, S. Y.; Yun, Y. S.; Lee, S.; Jang, D.; Park, K. Y.; Kim, J. K.; Kim, B. H.; Kang, K.; Kaplan, D. L.; Jin, H. J. Carbonization of a stable β-sheet-rich silk protein into a pseudographitic pyroprotein. Nat. Commun.2015, 6, 7145.

  75. Holland, C.; Numata, K.; Rnjak-Kovacina, J.; Seib, F. P. The biomedical use of silk: past, present, future. Adv. Healthc. Mater. 2019, 8, 1800465.

    Google Scholar 

  76. Fan, S.; Zhang, Y.; Huang, X.; Geng, L.; Shao, H.; Hu, X.; Zhang, Y. Silk materials for medical, electronic and optical applications. Sci. China Technol. Sci.2019, 62, 903–918.

    Google Scholar 

  77. Suhas; Gupta, V. K.; Carrott, P. J.; Singh, R.; Chaudhary, M.; Kushwaha, S. Cellulose: a review as natural, modified and activated carbon adsorbent. Bioresour. Technol.2016, 216, 1066–1076.

    CAS  PubMed  Google Scholar 

  78. Zhu, H.; Jia, Z.; Chen, Y.; Weadock, N.; Wan, J.; Vaaland, O.; Han, X.; Li, T.; Hu, L. Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir. Nano Lett.2013, 13, 3093–3100.

    CAS  PubMed  Google Scholar 

  79. Klemm, D.; Kramer, F.; Moritz, S.; Lindstrom, T.; Ankerfors, M.; Gray, D.; Dorris, A. Nanocelluloses: a new family of nature-based materials. Angew. Chem. Int. Ed.2011, 50, 5438–5466.

    CAS  Google Scholar 

  80. Jing, Y.; Guo, Y.; Xia, Q.; Liu, X.; Wang, Y. Catalytic production of value-added chemicals and liquid fuels from lignocellulosic biomass. Chem2019, 5, 2520–2546.

    CAS  Google Scholar 

  81. Kaushik, M.; Moores, A. Review: nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis. Green Chem.2016, 18, 622–637.

    CAS  Google Scholar 

  82. Abraham, E.; Kam, D.; Nevo, Y.; Slattegard, R.; Rivkin, A.; Lapidot, S.; Shoseyov, O. Highly modified cellulose nanocrystals and formation of epoxy-nanocrystalline cellulose (CNC) nanocomposites. ACS Appl. Mater. Interfaces2016, 8, 28086–28095.

    CAS  PubMed  Google Scholar 

  83. Foster, E. J.; Moon, R. J.; Agarwal, U. P.; Bortner, M. J.; Bras, J.; Camarero-Espinosa, S.; Chan, K. J.; Clift, M. J. D.; Cranston, E. D.; Eichhorn, S. J.; Fox, D. M.; Hamad, W. Y.; Heux, L.; Jean, B.; Korey, M.; Nieh, W.; Ong, K. J.; Reid, M. S.; Renneckar, S.; Roberts, R.; Shatkin, J. A.; Simonsen, J.; Stinson-Bagby, K.; Wanasekara, N.; Youngblood, J. Current characterization methods for cellulose nanomaterials. Chem. Soc. Rev.2018, 47, 2609–2679.

    CAS  PubMed  Google Scholar 

  84. Chen, W.; Li, Q.; Wang, Y.; Yi, X.; Zeng, J.; Yu, H.; Liu, Y.; Li, J. Comparative study of aerogels obtained from differently prepared nanocellulose fibers. ChemSusChem2014, 7, 154–161.

    CAS  PubMed  Google Scholar 

  85. Nogi, M.; Iwamoto, S.; Nakagaito, A. N.; Yano, H. Optically transparent nanofiber paper. Adv. Mater.2009, 21, 1595–1598.

    CAS  Google Scholar 

  86. Yang, X.; Cranston, E. D. Chemically cross-linked cellulose nanocrystal aerogels with shape recovery and superabsorbent properties. Chem. Mater.2014, 26, 6016–6025.

    CAS  Google Scholar 

  87. Jiang, F.; Li, T.; Li, Y.; Zhang, Y.; Gong, A.; Dai, J.; Hitz, E.; Luo, W.; Hu, L. Wood-based nanotechnologies toward sustainability. Adv. Mater.2018, 30, 1703453.

    Google Scholar 

  88. Kontturi, E.; Laaksonen, P.; Linder, M. B.; Nonappa; Groschel, A. H.; Rojas, O. J.; Ikkala, O. Advanced materials through assembly of nanocelluloses. Adv. Mater.2018, 30, 1703779.

    Google Scholar 

  89. Wang, S.; Lu, A.; Zhang, L. Recent advances in regenerated cellulose materials. Prog. Polym. Sci.2016, 53, 169–206.

    CAS  Google Scholar 

  90. Nechyporchuk, O.; Yu, J.; Nierstrasz, V. A.; Bordes, R. Cellulose nanofibril-based coatings of woven cotton fabrics for improved inkjet printing with a potential in e-textile manufacturing. ACS Sustain. Chem. Eng.2017, 5, 4793–4801.

    CAS  Google Scholar 

  91. Zheng, Q.; Cai, Z.; Ma, Z.; Gong, S. Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors. ACS Appl. Mater, Interfaces2015, 7, 3263–3271.

    CAS  Google Scholar 

  92. Wang, Z.; Carlsson, D. O.; Tammela, P.; Hua, K.; Zhang, P.; Nyholm, L.; Stromme, M. Surface modified nanocellulose fibers yield conducting polymer-based flexible supercapacitors with enhanced capacitances. ACS Nano2015, 9, 7563–7571.

    CAS  PubMed  Google Scholar 

  93. Dutta, S.; Kim, J.; Ide, Y.; Ho, Kim J.; Hossain, M. S. A.; Bando, Y.; Yamauchi, Y.; Wu, K. C. W. 3D network of cellulose-based energy storage devices and related emerging applications. Mater. Horiz.2017, 4, 522–545.

    CAS  Google Scholar 

  94. Zhang, T.; Yang, L.; Yan, X.; Ding, X. Recent advances of cellulose-based materials and their promising application in sodium-ion batteries and capacitors. Small2018, 14, 1802444.

    Google Scholar 

  95. Zargar, V.; Asghari, M.; Dashti, A. A review on chitin and chitosan polymers: structure, chemistry, solubility, derivatives, and applications. ChemBioEng Rev.2015, 2, 204–226.

    CAS  Google Scholar 

  96. Shamshina, J. L.; Berton, P.; Rogers, R. D. Advances in functional chitin materials: a review. ACS Sustain. Chem. Eng.2019, 7, 6444–6457.

    CAS  Google Scholar 

  97. Raabe, D.; Al-Sawalmih, A.; Yi, S. B.; Fabritius, H. Preferred crystallographic texture of α-chitin as a microscopic and macroscopic design principle of the exoskeleton of the lobster Homarus americanus. Acta Biomater.2007, 3, 882–895.

    CAS  PubMed  Google Scholar 

  98. Shamshina, J. L.; Barber, P. S.; Gurau, G.; Griggs, C. S.; Rogers, R. D. Pulping of crustacean waste using ionic liquids: to extract or not to extract. ACS Sustain. Chem. Eng.2016, 4, 6072–6081.

    CAS  Google Scholar 

  99. Pillai, C. K. S.; Paul, W.; Sharma, C. P. Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog. Polym. Sci.2009, 34, 641–678.

    CAS  Google Scholar 

  100. Shukla, S. K.; Mishra, A. K.; Arotiba, O. A.; Mamba, B. B. Chitosan-based nanomaterials: a state-of-the-art review. Int. J. Biol, Macromol.2013, 59, 46–58.

    CAS  Google Scholar 

  101. Yeul, V. S.; Rayalu, S. S. Unprecedented chitin and chitosan: a chemical overview. J. Polym. Environ.2012, 21, 606–614.

    Google Scholar 

  102. Zhang, X.; Rolandi, M. Engineering strategies for chitin nanofibers. J. Mater. Chem. B2017, 5, 2547–2559.

    CAS  PubMed  Google Scholar 

  103. Rinaudo, M. Chitin and chitosan: properties and applications. Prog. Polym. Sci.2006, 31, 603–632.

    CAS  Google Scholar 

  104. Ifuku, S.; Nogi, M.; Abe, K.; Yoshioka, M.; Morimoto, M.; Saimoto, H.; Yano, H. Preparation of chitin nanofibers with a uniform width as α-chitin from crab shells. Biomacromolecules2009, 10, 1584–1588.

    CAS  PubMed  Google Scholar 

  105. Ifuku, S.; Saimoto, H. Chitin nanofibers: preparations, modifications, and applications. Nanoscale2012, 4, 3308–3318.

    CAS  PubMed  Google Scholar 

  106. Kaya, M.; Akyuz, B.; Bulut, E.; Sargin, I.; Eroglu, F.; Tan, G. Chitosan nanofiber production from drosophila by electrospinning. Int. J. Biol. Macromol.2016, 92, 49–55.

    CAS  PubMed  Google Scholar 

  107. Kim, K.; Ha, M.; Choi, B.; Joo, S. H.; Kang, H. S.; Park, J. H.; Gu, B.; Park, C.; Park, C.; Kim, J.; Kwak, S. K.; Ko, H.; Jin, J.; Kang, S. J. Biodegradable, electro-active chitin nanofiber films for flexible piezoelectric transducers. Nano Energy2018, 48, 275–283.

    CAS  Google Scholar 

  108. Xu, D.; Huang, J.; Zhao, D.; Ding, B.; Zhang, L.; Cai, J. High-flexibility, high-toughness double-cross-linked chitin hydrogels by sequential chemical and physical cross-linkings. Adv. Mater. 2016, 28, 5844–5849.

    CAS  PubMed  Google Scholar 

  109. Wang, L.; Wang, K.; Lou, Z.; Jiang, K.; Shen, G. Plant-based modular building blocks for “green” electronic skins. Adv. Funct. Mater.2018, 28, 1804510.

    Google Scholar 

  110. Irimia-Vladu, M. "Green" electronics: biodegradable and biocompatible materials and devices for sustainable future. Chem. Soc. Rev.2014, 43, 588–610.

    CAS  PubMed  Google Scholar 

  111. Wu, X.; Zhou, J.; Huang, J. Integration of biomaterials into sensors based on organic thin-film transistors. Macromol. Rapid Commun.2018, 39, 1800084.

    Google Scholar 

  112. Su, B.; Gong, S.; Ma, Z.; Yap, L. W.; Cheng, W. Mimosa-inspired design of a flexible pressure sensor with touch sensitivity. Small2015, 11, 1886–1891.

    CAS  PubMed  Google Scholar 

  113. Jian, M.; Xia, K.; Wang, Q.; Yin, Z.; Wang, H.; Wang, C.; Xie, H.; Zhang, M.; Zhang, Y. Flexible and highly sensitive pressure sensors based on bionic hierarchical structures. Adv. Funct, Mater.2017, 27, 1606066.

    Google Scholar 

  114. Xia, K.; Wang, C.; Jian, M.; Wang, Q.; Zhang, Y. CVD growth of fingerprint-like patterned 3D graphene film for an ultrasensitive pressure sensor. Nano Res.2017, 11, 1124–1134.

    Google Scholar 

  115. Nie, P.; Wang, R.; Xu, X.; Cheng, Y.; Wang, X.; Shi, L.; Sun, J. High-performance piezoresistive electronic skin with bionic hierarchical microstructure and microcracks. ACS Appl. Mater, Interfaces2017, 9, 14911–14919.

    CAS  Google Scholar 

  116. Wei, Y.; Chen, S.; Lin, Y.; Yang, Z.; Liu, L. Cu-Ag core-shell nanowires for electronic skin with a petal molded microstructure. J. Mater. Chem. C2015, 3, 9594–9602.

    CAS  Google Scholar 

  117. Li, T.; Luo, H.; Qin, L.; Wang, X.; Xiong, Z.; Ding, H.; Gu, Y.; Liu, Z.; Zhang, T. Flexible capacitive tactile sensor based on micropatterned dielectric layer. Small2016, 12, 5042–5048.

    CAS  PubMed  Google Scholar 

  118. Wang, X.; Gu, Y.; Xiong, Z.; Cui, Z.; Zhang, T. Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals. Adv. Mater.2014, 26, 1336–1342.

    CAS  PubMed  Google Scholar 

  119. Afroj, S.; Karim, N.; Wang, Z.; Tan, S.; He, P.; Holwill, M.; Ghazaryan, D.; Fernando, A.; Novoselov, K. S. Engineering graphene flakes for wearable textile sensors via highly scalable and ultrafast yarn dyeing technique. ACS Nano2019, 13, 3847–3857.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Tao, L. Q.; Zhang, K. N.; Tian, H.; Liu, Y.; Wang, D. Y.; Chen, Y. Q.; Yang, Y.; Ren, T. L. Graphene-paper pressure sensor for detecting human motions. ACS Nano2017, 11, 8790–8795.

    CAS  PubMed  Google Scholar 

  121. Liu, Z. L.; Li, Z.; Cheng, L.; Chen, S. H.; Wu, D. Y.; Dai, F. Y. Reduced graphene oxide coated silk fabrics with conductive property for wearable electronic textiles application. Adv. Electron. Mater.2019, 5, 1800648.

    Google Scholar 

  122. Souri, H.; Bhattacharyya, D. Highly sensitive, stretchable and wearable strain sensors using fragmented conductive cotton fabric. J. Mater. Chem. C2018, 6, 10524–10531.

    CAS  Google Scholar 

  123. Hamedi, M. M.; Ainla, A.; Guder, F.; Christodouleas, D. C.; Fernandez-Abedul, M. T.; Whitesides, G. M. Integrating electronics and microfluidics on paper. Adv. Mater. 2016, 28, 5054–5063.

    CAS  PubMed  Google Scholar 

  124. Pyo, S.; Lee, J.; Kim, W.; Jo, E.; Kim, J. Multi-layered, hierarchical fabric-based tactile sensors with high sensitivity and linearity in ultrawide pressure range. Adv. Funct. Mater.2019, 29, 1902484.

    Google Scholar 

  125. Lima, R.; Alcaraz-Espinoza, J. J.; da Silva, F. A. G., Jr.; de Oliveira, H. P. Multifunctional wearable electronic textiles using cotton fibers with polypyrrole and carbon nanotubes. ACS Appl. Mater. Interfaces2018, 10, 13783–13795.

    CAS  PubMed  Google Scholar 

  126. Lund, A.; Darabi, S.; Hultmark, S.; Ryan, J. D.; Andersson, B.; Ström, A.; Müller, C. Roll-to-roll dyed conducting silk yarns: a versatile material for e-textile devices. Adv. Mater. Technol.2018, 3, 1800251.

    Google Scholar 

  127. Li, B.; Xiao, G.; Liu, F.; Qiao, Y.; Li, C. M.; Lu, Z. A flexible humidity sensor based on silk fabrics for human respiration monitoring. J. Mater. Chem. C2018, 6, 4549–4554.

    CAS  Google Scholar 

  128. Liu, M.; Pu, X.; Jiang, C.; Liu, T.; Huang, X.; Chen, L.; Du, C.; Sun, J.; Hu, W.; Wang, Z. L. Large-area all-textile pressure sensors for monitoring human motion and physiological signals. Adv. Mater.2017, 29, 1703700.

    Google Scholar 

  129. Guder, F.; Ainla, A.; Redston, J.; Mosadegh, B.; Glavan, A.; Martin, T. J.; Whitesides, G. M. Paper-based electrical respiration sensor. Angew. Chem. Int. Ed.2016, 55, 5727–5732.

    Google Scholar 

  130. Liao, X.; Zhang, Z.; Liao, Q.; Liang, Q.; Ou, Y.; Xu, M.; Li, M.; Zhang, G.; Zhang, Y. Flexible and printable paper-based strain sensors for wearable and large-area green electronics. Nanoscale2016, 8, 13025–13032.

    CAS  PubMed  Google Scholar 

  131. Liao, X.; Liao, Q.; Yan, X.; Liang, Q.; Si, H.; Li, M.; Wu, H.; Cao, S.; Zhang, Y. Flexible and highly sensitive strain sensors fabricated by pencil drawn for wearable monitor. Adv. Funct. Mater. 2015, 25, 2395–2401.

    CAS  Google Scholar 

  132. Mahadeva, S. K.; Walus, K.; Stoeber, B. Paper as a platform for sensing applications and other devices: a review. ACS Appl, Mater. Interfaces2015, 7, 8345–8362.

    CAS  Google Scholar 

  133. Zhang, Y.; Zhang, L.; Cui, K.; Ge, S.; Cheng, X.; Yan, M.; Yu, J.; Liu, H. Flexible electronics based on micro/nanostructured paper. Adv. Mater.2018, 30, 1801588.

    Google Scholar 

  134. Asadpoordarvish, A.; Sandström, A.; Larsen, C.; Bollström, R.; Toivakka, M.; Österbacka, R.; Edman, L. Light-emitting paper. Adv. Funct. Mater.2015, 25, 3238–3245.

    CAS  Google Scholar 

  135. Xu, J.; Zhang, Y.; Li, L.; Kong, Q.; Zhang, L.; Ge, S.; Yu, J. Colorimetric and electrochemiluminescence dual-mode sensing of lead ion based on integrated lab-on-paper device. ACS Appl. Mater. Interfaces2018, 10, 3431–3440.

    CAS  PubMed  Google Scholar 

  136. Yang, H.; Zhang, Y.; Li, L.; Zhang, L.; Lan, F.; Yu, J. Sudoku-like lab-on-paper cyto-device with dual enhancement of electrochemiluminescence intermediates strategy. Anal. Chem. 2017, 89, 7511–7519.

    CAS  PubMed  Google Scholar 

  137. Zhang, Y.; Ge, L.; Li, M.; Yan, M.; Ge, S.; Yu, J.; Song, X.; Cao, B. Flexible paper-based ZnO nanorod light-emitting diodes induced multiplexed photoelectrochemical immunoassay. Chem. Commun.2014, 50, 1417–1419.

    CAS  Google Scholar 

  138. Chen, G.; Matsuhisa, N.; Liu, Z.; Qi, D.; Cai, P.; Jiang, Y.; Wan, C.; Cui, Y.; Leow, W. R.; Liu, Z.; Gong, S.; Zhang, K. Q.; Cheng, Y.; Chen, X. Plasticizing silk protein for on-skin stretchable electrodes. Adv. Mater.2018, 30, 1800129.

    Google Scholar 

  139. Seo, J.-W.; Kim, H.; Kim, K.; Choi, S. Q.; Lee, H. J. Calcium-modified silk as a biocompatible and strong adhesive for epidermal electronics. Adv. Funct. Mater.2018, 28, 1800802.

    Google Scholar 

  140. Kim, D. H.; Viventi, J.; Amsden, J. J.; Xiao, J.; Vigeland, L.; Kim, Y. S.; Blanco, J. A.; Panilaitis, B.; Frechette, E. S.; Contreras, D.; Kaplan, D. L.; Omenetto, F. G.; Huang, Y.; Hwang, K. C.; Zakin, M. R.; Litt, B.; Rogers, J. A. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater.2010, 9, 511–517.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Hwang, S. W.; Tao, H.; Kim, D. H.; Cheng, H.; Song, J. K.; Rill, E.; Brenckle, M. A.; Panilaitis, B.; Won, S. M.; Kim, Y. S. A physically transient form of silicon electronics. Science2012, 337, 1640–1644.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Mannoor, M. S.; Tao, H.; Clayton, J. D.; Sengupta, A.; Kaplan, D. L.; Naik, R. R.; Verma, N.; Omenetto, F. G.; McAlpine, M. C. Graphene-based wireless bacteria detection on tooth enamel. Nat. Commun.2012, 3, 763.

  143. Jin, J.; Lee, D.; Im, H. G.; Han, Y. C.; Jeong, E. G.; Rolandi, M.; Choi, K. C.; Bae, B. S. Chitin nanofiber transparent paper for flexible green electronics. Adv. Mater.2016, 28, 5169–5175.

    CAS  PubMed  Google Scholar 

  144. Hong, M. S.; Choi, G. M.; Kim, J.; Jang, J.; Choi, B.; Kim, J. K.; Jeong, S.; Leem, S.; Kwon, H. Y.; Hwang, H. B.; Im, H. G.; Park, J. U.; Bae, B. S.; Jin, J. Biomimetic chitin-silk hybrids: an optically transparent structural platform for wearable devices and advanced electronics. Adv. Funct. Mater.2018, 28, 1705480.

    Google Scholar 

  145. Fang, Z.; Zhu, H.; Bao, W.; Preston, C.; Liu, Z.; Dai, J.; Li, Y.; Hu, L. Highly transparent paper with tunable haze for green electronics. Energy Environ. Sci.2014, 7, 3313–3319.

    CAS  Google Scholar 

  146. Barhoum, A.; Samyn, P.; Ohlund, T.; Dufresne, A. Review of recent research on flexible multifunctional nanopapers. Nanoscale2017, 9, 15181–15205.

    CAS  PubMed  Google Scholar 

  147. Jung, Y. H.; Chang, T. H.; Zhang, H.; Yao, C.; Zheng, Q.; Yang, V. W.; Mi, H.; Kim, M.; Cho, S. J.; Park, D. W.; Jiang, H.; Lee, J.; Qiu, Y.; Zhou, W.; Cai, Z.; Gong, S.; Ma, Z. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat. Commun.2015, 6, 7170.

  148. Fujisaki, Y.; Koga, H.; Nakajima, Y.; Nakata, M.; Tsuji, H.; Yamamoto, T.; Kurita, T.; Nogi, M.; Shimidzu, N. Transparent nanopaper-based flexible organic thin-film transistor array. Adv. Funct. Mater.2014, 24, 1657–1663.

    CAS  Google Scholar 

  149. Yin, Z.; Jian, M.; Wang, C.; Xia, K.; Liu, Z.; Wang, Q.; Zhang, M.; Wang, H.; Liang, X.; Liang, X.; Long, Y.; Yu, X.; Zhang, Y. Splash-resistant and light-weight silk-sheathed wires for textile electronics. Nano Lett.2018, 18, 7085–7091.

    CAS  PubMed  Google Scholar 

  150. Zhang, C.; Fan, S.; Shao, H.; Hu, X.; Zhu, B.; Zhang, Y. Graphene trapped silk scaffolds integrate high conductivity and stability. Carbon2019, 148, 16–27.

    CAS  Google Scholar 

  151. Veres, J.; Ogier, S.; Lloyd, G.; de Leeuw, D. Gate insulators in organic field-effect transistors. Chem. Mater.2004, 16, 4543–4555.

    CAS  Google Scholar 

  152. Wang, C. H.; Hsieh, C. Y.; Hwang, J. C. Flexible organic thin-film transistors with silk fibroin as the gate dielectric. Adv. Mater. 2011, 23, 1630–1634.

    CAS  PubMed  Google Scholar 

  153. Cunha, I.; Barras, R.; Grey, P.; Gaspar, D.; Fortunato, E.; Martins, R.; Pereira, L. Reusable cellulose-based hydrogel sticker film applied as gate dielectric in paper electrolyte-gated transistors. Adv. Funct. Mater.2017, 27, 1606755.

    Google Scholar 

  154. Liu, Y. H.; Zhu, L. Q.; Feng, P.; Shi, Y.; Wan, Q. Freestanding artificial synapses based on laterally proton-coupled transistors on chitosan membranes. Adv. Mater.2015, 27, 5599–5604.

    CAS  PubMed  Google Scholar 

  155. Tan, C.; Liu, Z.; Huang, W.; Zhang, H. Non-volatile resistive memory devices based on solution-processed ultrathin two-dimensional nanomaterials. Chem. Soc, Rev.2015, 44, 2615–2628.

    CAS  Google Scholar 

  156. Lin, W. P.; Liu, S. J.; Gong, T.; Zhao, Q.; Huang, W. Polymer-based resistive memory materials and devices. Adv. Mater. 2014, 26, 570–606.

    CAS  PubMed  Google Scholar 

  157. Wang, H.; Meng, F.; Zhu, B.; Leow, W. R.; Liu, Y.; Chen, X. Resistive switching memory devices based on proteins. Adv. Mater.2015, 27, 7670–7676.

    CAS  PubMed  Google Scholar 

  158. Hota, M. K.; Bera, M. K.; Kundu, B.; Kundu, S. C.; Maiti, C. K. A natural silk fibroin protein-based transparent bio-memristor. Adv. Funct. Mater.2012, 22, 4493–4499.

    CAS  Google Scholar 

  159. Wang, H.; Du, Y.; Li, Y.; Zhu, B.; Leow, W. R.; Li, Y.; Pan, J.; Wu, T.; Chen, X. Configurable resistive switching between memory and threshold characteristics for protein-based devices. Adv. Funct. Mater.2015, 25, 3825–3831.

    CAS  Google Scholar 

  160. Wang, H.; Zhu, B.; Wang, H.; Ma, X.; Hao, Y.; Chen, X. Ultra-lightweight resistive switching memory devices based on silk fibroin. Small2016, 12, 3360–3365.

    CAS  PubMed  Google Scholar 

  161. Hosseini, N. R.; Lee, J. S. Biocompatible and flexible chitosan-based resistive switching memory with magnesium electrodes. Adv. Funct. Mater.2015, 25, 5586–5592.

    CAS  Google Scholar 

  162. Chorsi, M. T.; Curry, E. J.; Chorsi, H. T.; Das, R.; Baroody, J.; Purohit, P. K.; Ilies, H.; Nguyen, T. D. Piezoelectric biomaterials for sensors and actuators. Adv. Mater.2019, 31, 1802084.

    Google Scholar 

  163. Jayathilaka, W.; Qi, K.; Qin, Y.; Chinnappan, A.; Serrano-Garcia, W.; Baskar, C.; Wang, H.; He, J.; Cui, S.; Thomas, S. W.; Ramakrishna, S. Significance of nanomaterials in wearables: a review on wearable actuators and sensors. Adv. Mater.2019, 31, 1805921.

    Google Scholar 

  164. Wang, B.; Facchetti, A. Mechanically flexible conductors for stretchable and wearable e-skin and e-textile devices. Adv. Mater.2019, 31, 1901408.

    Google Scholar 

  165. Yi, F.; Zhang, Z.; Kang, Z.; Liao, Q.; Zhang, Y. Recent advances in triboelectric nanogenerator-based health monitoring. Adv. Funct. Mater.2019, 29, 1808849.

    CAS  Google Scholar 

  166. Yu, G. H.; Han, Q.; Qu, L. T. Graphene fibers: advancing applications in sensor, energy storage and conversion. Chinese J. Polym. Sci.2019, 37, 535–547.

    CAS  Google Scholar 

  167. Jia, T.; Wang, Y.; Dou, Y.; Li, Y.; Jung de Andrade, M.; Wang, R.; Fang, S.; Li, J.; Yu, Z.; Qiao, R.; Liu, Z.; Cheng, Y.; Su, Y.; Minary Jolandan, M.; Baughman, R. H.; Qian, D.; Liu, Z. Moisture sensitive smart yarns and textiles from self-balanced silk fiber muscles. Adv. Funct. Mater.2019, 29, 1808241.

    Google Scholar 

  168. Kuang, Y.; Chen, C.; Cheng, J.; Pastel, G.; Li, T.; Song, J.; Jiang, F.; Li, Y.; Zhang, Y.; Jang, S. H.; Chen, G.; Li, T.; Hu, L. Selectively aligned cellulose nanofibers towards high-performance soft actuators. Extreme Mech. Lett.2019, 29, 100463.

    Google Scholar 

  169. Liu, D.; Tarakanova, A.; Hsu, C. C.; Yu, M.; Zheng, S.; Yu, L.; Liu, J.; He, Y.; Dunstan, D.; Buehler, M. J. Spider dragline silk as torsional actuator driven by humidity. Sci. Adv.2019, 5, eaau9183.

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Mirabedini, A.; Aziz, S.; Spinks, G. M.; Foroughi, J. Wet-spun biofiber for torsional artificial muscles. Soft Robot. 2017, 4, 421–430.

    PubMed  Google Scholar 

  171. Wang, Q.; Ling, S.; Liang, X.; Wang, H.; Lu, H.; Zhang, Y. Self-healable multifunctional electronic tattoos based on silk and graphene. Adv. Funct. Mater.2019, 29, 1808695.

    Google Scholar 

  172. Zhou, Y.; Wan, C.; Yang, Y.; Yang, H.; Wang, S.; Dai, Z.; Ji, K.; Jiang, H.; Chen, X.; Long, Y. Highly stretchable, elastic, and ionic conductive hydrogel for artificial soft electronics. Adv. Funct. Mater.2019, 29, 1806220.

    Google Scholar 

  173. Tong, R.; Chen, G.; Pan, D.; Qi, H.; Li, R.; Tian, J.; Lu, F.; He, M. Highly stretchable and compressible cellulose ionic hydrogels for flexible strain sensors. Biomacromolecules2019, 20, 2096–2104.

    CAS  PubMed  Google Scholar 

  174. Shao, C.; Wang, M.; Meng, L.; Chang, H.; Wang, B.; Xu, F.; Yang, J.; Wan, P. Mussel-inspired cellulose nanocomposite tough hydrogels with synergistic self-healing, adhesive, and strain-sensitive properties. Chem. Mater.2018, 30, 3110–3121.

    CAS  Google Scholar 

  175. Khan, Z. U.; Edberg, J.; Hamedi, M. M.; Gabrielsson, R.; Granberg, H.; Wagberg, L.; Engquist, I.; Berggren, M.; Crispin, X. Thermoelectric polymers and their elastic aerogels. Adv. Mater. 2016, 28, 4556–4562.

    PubMed  Google Scholar 

  176. Han, S.; Alvi, N. U. H.; Granlof, L.; Granberg, H.; Berggren, M.; Fabiano, S.; Crispin, X. A multiparameter pressure-temperature-humidity sensor based on mixed ionic-electronic cellulose aerogels. Adv. Sci.2019, 6, 1802128.

    PubMed  PubMed Central  Google Scholar 

  177. Wang, Y.; Wang, H.; Wang, H.; Zhang, M.; Liang, X.; Xia, K.; Zhang, Y. Calcium gluconate derived carbon nanosheet intrinsically decorated with nanopapillae for multifunctional printed flexible electronics. ACS Appl. Mater. Interfaces2019, 11, 20272–20280.

    CAS  PubMed  Google Scholar 

  178. Li, Y.; Samad, Y. A.; Taha, T.; Cai, G.; Fu, S. Y.; Liao, K. Highly flexible strain sensor from tissue paper for wearable electronics. ACS Sustain. Chem. Eng.2016, 4, 4288–4295.

    CAS  Google Scholar 

  179. Chen, S.; Song, Y.; Ding, D.; Ling, Z.; Xu, F. Flexible and anisotropic strain sensor based on carbonized crepe paper with aligned cellulose fibers. Adv. Funct. Mater.2018, 28, 1802547.

    Google Scholar 

  180. Wu, Z. Y.; Li, C.; Liang, H. W.; Chen, J. F.; Yu, S. H. Ultralight, flexible, and fire-resistant carbon nanofiber aerogels from bacterial cellulose. Angew. Chem. Int. Ed.2013, 52, 2925–2929.

    CAS  Google Scholar 

  181. Chyan, Y.; Ye, R.; Li, Y.; Singh, S. P.; Arnusch, C. J.; Tour, J. M. Laser-induced graphene by multiple lasing: toward electronics on cloth, paper, and food. ACS Nano2018, 12, 2176–2183.

    CAS  PubMed  Google Scholar 

  182. Lee, S.; Jeon, S. Laser-induced graphitization of cellulose nanofiber substrates under ambient conditions. ACS Sustain. Chem. Eng.2019, 7, 2270–2275.

    CAS  Google Scholar 

  183. Ye, R.; Chyan, Y.; Zhang, J.; Li, Y.; Han, X.; Kittrell, C.; Tour, J. M. Laser-induced graphene formation on wood. Adv. Mater.2017, 29, 1702211.

    Google Scholar 

  184. Le, T. S. D.; Park, S.; An, J.; Lee, P. S.; Kim, Y. J. Ultrafast laser pulses enable one-step graphene patterning on woods and leaves for green electronics. Adv. Funct. Mater.2019, 29, 1902771.

    Google Scholar 

  185. Wang, C.; Xia, K.; Zhang, M.; Jian, M.; Zhang, Y. An all-silk-derived dual-mode e-skin for simultaneous temperature-pressure detection. ACS Appl. Mater. Interfaces2017, 9, 39484–39492.

    CAS  PubMed  Google Scholar 

  186. Wang, C.; Zhang, M.; Xia, K.; Gong, X.; Wang, H.; Yin, Z.; Guan, B.; Zhang, Y. Intrinsically stretchable and conductive textile by a scalable process for elastic wearable electronics. ACS Appl, Mater. Interfaces2017, 9, 13331–13338.

    CAS  Google Scholar 

  187. Wang, C.; Li, X.; Gao, E.; Jian, M.; Xia, K.; Wang, Q.; Xu, Z.; Ren, T.; Zhang, Y. Carbonized silk fabric for ultrastretchable, highly sensitive, and wearable strain sensors. Adv. Mater. 2016, 28, 6640–6648.

    CAS  PubMed  Google Scholar 

  188. Zhang, M.; Wang, C.; Liang, X.; Yin, Z.; Xia, K.; Wang, H.; Jian, M.; Zhang, Y. Weft-knitted fabric for a highly stretchable and low-voltage wearable heater. Adv. Electron. Mater.2017, 3, 1700193.

    Google Scholar 

  189. Wang, Q.; Jian, M.; Wang, C.; Zhang, Y. Carbonized silk nanofiber membrane for transparent and sensitive electronic skin. Adv. Funct. Mater.2017, 27, 1605657.

    Google Scholar 

  190. Zhang, M.; Wang, C.; Wang, H.; Jian, M.; Hao, X.; Zhang, Y. Carbonized cotton fabric for high-performance wearable strain sensors. Adv. Funct. Mater.2017, 27, 1604795.

    Google Scholar 

  191. Wang, C.; Xia, K.; Jian, M.; Wang, H.; Zhang, M.; Zhang, Y. Carbonized silk georgette as an ultrasensitive wearable strain sensor for full-range human activity monitoring. J. Mater. Chem. C2017, 5, 7604–7611.

    CAS  Google Scholar 

  192. Lu, W.; Jian, M.; Wang, Q.; Xia, K.; Zhang, M.; Wang, H.; He, W.; Lu, H.; Zhang, Y. Hollow core-sheath nanocarbon spheres grown on carbonized silk fabrics for self-supported and nonenzymatic glucose sensing. Nanoscale2019, 11, 11856–11863.

    CAS  PubMed  Google Scholar 

  193. Ye, R.; James, D. K.; Tour, J. M. Laser-induced graphene: from discovery to translation. Adv. Mater.2019, 31, 1803621.

    Google Scholar 

  194. Huang, L.; Lin, S.; Xu, Z.; Zhou, H.; Duan, J.; Hu, B.; Zhou, J. Fiber-based energy conversion devices for human-body energy harvesting. Adv. Mater.2019.

    Google Scholar 

  195. Liu, J.; Cao, H.; Jiang, B.; Xue, Y.; Fu, L. Newborn 2D materials for flexible energy conversion and storage. Sci. China Mater.2016, 59, 459–474.

    CAS  Google Scholar 

  196. Li, S.; Huang, D.; Zhang, B.; Xu, X.; Wang, M.; Yang, G.; Shen, Y. Flexible supercapacitors based on bacterial cellulose paper electrodes. Adv. Energy Mater.2014, 4, 1301655.

    Google Scholar 

  197. Chen, Y.; Cai, K.; Liu, C.; Song, H.; Yang, X. High-performance and breathable polypyrrole coated air-laid paper for flexible all-solid-state supercapacitors. Adv. Energy Mater.2017, 7, 1701247.

    Google Scholar 

  198. Liu, L.; Yu, Y.; Yan, C.; Li, K.; Zheng, Z. Wearable energy-dense and power-dense supercapacitor yarns enabled by scalable graphene-metallic textile composite electrodes. Nat. Commun. 2015, 6, 7260.

  199. Zhang, C. J.; Kremer, M. P.; Seral-Ascaso, A.; Park, S. H.; McEvoy, N.; Anasori, B.; Gogotsi, Y.; Nicolosi, V. Stamping of flexible, coplanar micro-supercapacitors using Mxene inks. Adv. Funct. Mater.2018, 28, 1705506.

    Google Scholar 

  200. Huang, Q.; Wang, D.; Zheng, Z. Textile-based electrochemical energy storage devices. Adv. Energy Mater.2016, 6, 1600783.

    Google Scholar 

  201. Li, P.; Zhang, Y.; Zheng, Z. Polymer-assisted metal deposition (PAMD) for flexible and wearable electronics: principle, materials, printing, and devices. Adv. Mater.2019, 31, 1902987.

    Google Scholar 

  202. Das, C.; Krishnamoorthy, K. Flexible microsupercapacitors using silk and cotton substrates. ACS Appl. Mater. Interfaces2016, 8, 29504–29510.

    CAS  PubMed  Google Scholar 

  203. Jost, K.; Durkin, D. P.; Haverhals, L. M.; Brown, E. K.; Langenstein, M.; de Long, H. C.; Trulove, P. C.; Gogotsi, Y.; Dion, G. Natural fiber welded electrode yarns for knittable textile supercapacitors. Adv. Energy Mater.2015, 5, 1401286.

    Google Scholar 

  204. Yang, Y.; Huang, Q.; Niu, L.; Wang, D.; Yan, C.; She, Y.; Zheng, Z. Waterproof, ultrahigh areal-capacitance, wearable supercapacitor fabrics. Adv. Mater.2017, 29, 1606679.

    Google Scholar 

  205. Weng, Z.; Su, Y.; Wang, D. W.; Li, F.; Du, J.; Cheng, H. M. Graphene-cellulose paper flexible supercapacitors. Adv. Energy Mater.2011, 1, 917–922.

    CAS  Google Scholar 

  206. Ko, Y.; Kwon, M.; Bae, W. K.; Lee, B.; Lee, S. W.; Cho, J. Flexible supercapacitor electrodes based on real metal-like cellulose papers. Nat. Commun.2017, 8, 536.

  207. Zhang, L.; Zhu, P.; Zhou, F.; Zeng, W.; Su, H.; Li, G.; Gao, J.; Sun, R.; Wong, C. P. Flexible asymmetrical solid-state supercapacitors based on laboratory filter paper. ACS Nano2016, 10, 1273–1282.

    CAS  PubMed  Google Scholar 

  208. Chen, C.; Xu, S.; Kuang, Y.; Gan, W.; Song, J.; Chen, G.; Pastel, G.; Liu, B.; Li, Y.; Huang, H.; Hu, L. Nature-inspired tri-pathway design enabling high-performance flexible Li-O2 batteries. Adv. Energy Mater.2019, 9, 1802964.

    Google Scholar 

  209. Zhu, Y. H.; Yuan, S.; Bao, D.; Yin, Y. B.; Zhong, H. X.; Zhang, X. B.; Yan, J. M.; Jiang, Q. Decorating waste cloth via industrial wastewater for tube-type flexible and wearable sodium-ion batteries. Adv. Mater.2017, 29, 1603719.

    Google Scholar 

  210. Li, M.; Wahyudi, W.; Kumar, P.; Wu, F.; Yang, X.; Li, H.; Li, L. J.; Ming, J. Scalable approach to construct free-standing and flexible carbon networks for lithium-sulfur battery. ACS Appl. Mater. Interfaces2017, 9, 8047–8054.

    CAS  PubMed  Google Scholar 

  211. Xu, S.; Chen, C.; Kuang, Y.; Song, J.; Gan, W.; Liu, B.; Hitz, E. M.; Connell, J. W.; Lin, Y.; Hu, L. Flexible lithium-CO2 battery with ultrahigh capacity and stable cycling. Energ. Environ. Sci. 2018, 11, 3231–3237.

    CAS  Google Scholar 

  212. Ma, Y.; Xie, X.; Lv, R.; Na, B.; Ouyang, J.; Liu, H. Nanostructured polyaniline-cellulose papers for solid-state flexible aqueous Zn-ion battery. ACS Sustain. Chem. Eng.2018, 6, 8697–8703.

    CAS  Google Scholar 

  213. Cheng, Q.; Ye, D.; Yang, W.; Zhang, S.; Chen, H.; Chang, C.; Zhang, L. Construction of transparent cellulose-based nanocomposite papers and potential application in flexible solar cells. ACS Sustain. Chem. Eng.2018, 6, 8040–8047.

    CAS  Google Scholar 

  214. Jia, X.; Wang, C.; Zhao, C.; Ge, Y.; Wallace, G. G. Toward biodegradable Mg-air bioelectric batteries composed of silk fibroin-polypyrrole film. Adv. Funct. Mater.2016, 26, 1454–1462.

    CAS  Google Scholar 

  215. Yang, X.; Shi, K.; Zhitomirsky, I.; Cranston, E. D. Cellulose nanocrystal aerogels as universal 3D lightweight substrates for supercapacitor materials. Adv. Mater.2015, 27, 6104–6109.

    CAS  PubMed  Google Scholar 

  216. Zhang, T. W.; Tian, T.; Shen, B.; Song, Y. H.; Yao, H. B. Recent advances on biopolymer fiber based membranes for lithiumion battery separators. Compos. Commun.2019, 14, 7–14.

    CAS  Google Scholar 

  217. Waqas, M.; Ali, S.; Feng, C.; Chen, D.; Han, J.; He, W. Recent development in separators for high-temperature lithiumion batteries. Small2019, 15, 1901689.

  218. Zhang, W.; Tu, Z.; Qian, J.; Choudhury, S.; Archer, L. A.; Lu, Y. Design principles of functional polymer separators for high-energy, metal-based batteries. Small2018, 14, 1703001.

    Google Scholar 

  219. Pereira, R. F. P.; Gonçalves, R.; Fernandes, M.; Costa, C. M.; Silva, M. M.; de Zea Bermudez, V.; Lanceros-Mendez, S. Bombyx mori silkworm cocoon separators for lithium-ion batteries with superior safety and sustainability. Adv. Sustain. Syst.2018, 2, 1800098.

  220. Tan, X.; Zhao, W.; Mu, T. Controllable exfoliation of natural silk fibers into nanofibrils by protein denaturant deep eutectic solvent: nanofibrous strategy for multifunctional membranes. Green Chem.2018, 20, 3625–3633.

    CAS  Google Scholar 

  221. Pereira, R. F. P.; Brito-Pereira, R.; Goncalves, R.; Silva, M. P.; Costa, C. M.; Silva, M. M.; de Zea Bermudez, V.; Lanceros-Mendez, S. Silk fibroin separators: a step toward lithium-ion batteries with enhanced sustainability. ACS Appl. Mater. Interfaces2018, 10, 5385–5394.

    CAS  PubMed  Google Scholar 

  222. Zhang, L. C.; Sun, X.; Hu, Z.; Yuan, C. C.; Chen, C. H. Rice paper as a separator membrane in lithium-ion batteries. J. Power Sources2012, 204, 149–154.

    CAS  Google Scholar 

  223. Yu, B. C.; Park, K.; Jang, J. H.; Goodenough, J. B. Cellulose-based porous membrane for suppressing Li dendrite formation in lithium-sulfur battery. ACS Energy Lett.2016, 1, 633–637.

    CAS  Google Scholar 

  224. Pan, R.; Sun, R.; Wang, Z.; Lindh, J.; Edström, K.; Strømme, M.; Nyholm, L. Sandwich-structured nano/micro fiber-based separators for lithium metal batteries. Nano Energy2019, 55, 316–326.

    CAS  Google Scholar 

  225. Zolin, L.; Destro, M.; Chaussy, D.; Penazzi, N.; Gerbaldi, C.; Beneventi, D. Aqueous processing of paper separators by filtration dewatering: towards Li-ion paper batteries. J. Mater. Chem. A2015, 3, 14894–14901.

    CAS  Google Scholar 

  226. Zhang, T. W.; Chen, J. L.; Tian, T.; Shen, B.; Peng, Y. D.; Song, Y. H.; Jiang, B.; Lu, L. L.; Yao, H. B.; Yu, S. H. Sustainable separators for high-performance lithium ion batteries enabled by chemical modifications. Adv. Funct. Mater.2019, 29, 1902023.

    Google Scholar 

  227. Zhang, T. W.; Shen, B.; Yao, H. B.; Ma, T.; Lu, L. L.; Zhou, F.; Yu, S. H. Prawn shell derived chitin nanofiber membranes as advanced sustainable separators for Li/Na-ion batteries. Nano Lett.2017, 17, 4894–4901.

    CAS  PubMed  Google Scholar 

  228. Kim, J. K.; Kim, D. H.; Joo, S. H.; Choi, B.; Cha, A.; Kim, K. M.; Kwon, T. H.; Kwak, S. K.; Kang, S. J.; Jin, J. Hierarchical chitin fibers with aligned nanofibrillar architectures: a nonwoven-mat separator for lithium metal batteries. ACS Nano2017, 11, 6114–6121.

    CAS  PubMed  Google Scholar 

  229. Singh, R.; Polu, A. R.; Bhattacharya, B.; Rhee, H. W.; Varlikli, C.; Singh, P. K. Perspectives for solid biopolymer electrolytes in dye sensitized solar cell and battery application. Renew. Sust. Energ. Rev.2016, 65, 1098–1117.

    CAS  Google Scholar 

  230. Willgert, M.; Leijonmarck, S.; Lindbergh, G.; Malmström, E.; Johansson, M. Cellulose nanofibril reinforced composite electrolytes for lithium ion battery applications. J. Mater. Chem. A2014, 2, 13556.

    CAS  Google Scholar 

  231. Zhao, N.; Wu, F.; Xing, Y.; Qu, W.; Chen, N.; Shang, Y.; Yan, M.; Li, Y.; Li, L.; Chen, R. Flexible hydrogel electrolyte with superior mechanical properties based on poly(vinyl alcohol) and bacterial cellulose for the solid-state zinc-air batteries. ACS Appl. Mater. Interfaces2019, 11, 15537–15542.

    CAS  PubMed  Google Scholar 

  232. Buraidah, M. H.; Teo, L. P.; Au, Yong C. M.; Shah, S.; Arof, A. K. Performance of polymer electrolyte based on chitosan blended with poly(ethylene oxide) for plasmonic dye-sensitized solar cell. Opt. Mater.2016, 57, 202–211.

    CAS  Google Scholar 

  233. Zhao, D.; Chen, C.; Zhang, Q.; Chen, W.; Liu, S.; Wang, Q.; Liu, Y.; Li, J.; Yu, H. High performance, flexible, solid-state supercapacitors based on a renewable and biodegradable mesoporous cellulose membrane. Adv. Energy Mater. 2017, 7, 1700739.

    Google Scholar 

  234. Jia, X.; Wang, C.; Ranganathan, V.; Napier, B.; Yu, C.; Chao, Y.; Forsyth, M.; Omenetto, F. G.; MacFarlane, D. R.; Wallace, G. G. A biodegradable thin-film magnesium primary battery using silk fibroin-ionic liquid polymer electrolyte. ACS Energy Lett.2017, 2, 831–836.

    CAS  Google Scholar 

  235. Xu, D.; Wang, B.; Wang, Q.; Gu, S.; Li, W.; Jin, J.; Chen, C.; Wen, Z. High-strength internal cross-linking bacterial cellulose-network-based gel polymer electrolyte for dendrite-suppressing and high-rate lithium batteries. ACS Appl. Mater. Interfaces2018, 10, 17809–17819.

    CAS  PubMed  Google Scholar 

  236. Cao, L.; Yang, M.; Wu, D.; Lyu, F.; Sun, Z.; Zhong, X.; Pan, H.; Liu, H.; Lu, Z. Biopolymer-chitosan based supramolecular hydrogels as solid state electrolytes for electrochemical energy storage. Chem. Commun.2017, 53, 1615–1618.

    CAS  Google Scholar 

  237. Wan, S.; Peng, J.; Jiang, L.; Cheng, Q. Bioinspired graphene-based nanocomposites and their application in flexible energy devices. Adv. Mater.2016, 28, 7862–7898.

    CAS  PubMed  Google Scholar 

  238. Shown, I.; Ganguly, A.; Chen, L. C.; Chen, K. H. Conducting polymer-based flexible supercapacitor. Energy Sci. Eng. 2015, 3, 2–26.

    CAS  Google Scholar 

  239. Zhang, X.; Hou, L.; Ciesielski, A.; Samorì, P. 2D materials beyond graphene for high-performance energy storage applications. Adv. Energy Mater.2016, 6, 1600671.

    Google Scholar 

  240. Wang, X.; Yao, C.; Wang, F.; Li, Z. Cellulose-based nanomaterials for energy applications. Small2017, 13, 1702240.

  241. Heo, J. S.; Eom, J.; Kim, Y. H.; Park, S. K. Recent progress of textile-based wearable electronics: a comprehensive review of materials, devices, and applications. Small2018, 14, 1703034.

    Google Scholar 

  242. Zhao, C. E.; Gai, P.; Song, R.; Chen, Y.; Zhang, J.; Zhu, J. J. Nanostructured material-based biofuel cells: recent advances and future prospects. Chem. Soc. Rev.2017, 46, 1545–1564.

    CAS  PubMed  Google Scholar 

  243. Kim, H. M.; Sun, H. H.; Belharouak, I.; Manthiram, A.; Sun, Y. K. An alternative approach to enhance the performance of high sulfur-loading electrodes for Li-S batteries. ACS Energy Lett.2016, 1, 136–141.

    CAS  Google Scholar 

  244. Kuang, Y.; Chen, C.; Pastel, G.; Li, Y.; Song, J.; Mi, R.; Kong, W.; Liu, B.; Jiang, Y.; Yang, K.; Hu, L. Conductive cellulose nanofiber enabled thick electrode for compact and flexible energy storage devices. Adv. Energy Mater.2018, 8, 1802398.

    Google Scholar 

  245. Chen, C.; Lee, S. H.; Cho, M.; Kim, J.; Lee, Y. Cross-linked chitosan as an efficient binder for Si anode of Li-ion batteries. ACS Appl. Mater. Interfaces2016, 8, 2658–2665.

    CAS  PubMed  Google Scholar 

  246. Hou, J.; Cao, C.; Idrees, F.; Ma, X. Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano2015, 9, 2556–2564.

    CAS  PubMed  Google Scholar 

  247. Yun, Y. S.; Cho, S. Y.; Shim, J.; Kim, B. H.; Chang, S. J.; Baek, S. J.; Huh, Y. S.; Tak, Y.; Park, Y. W.; Park, S.; Jin, H. J. Microporous carbon nanoplates from regenerated silk proteins for supercapacitors. Adv. Mater.2013, 25, 1993–1998.

    CAS  PubMed  Google Scholar 

  248. Wang, C.; Chen, W.; Xia, K.; Xie, N.; Wang, H.; Zhang, Y. Silk-derived 2D porous carbon nanosheets with atomically-dispersed Fe-Nx-C sites for highly efficient oxygen reaction catalysts. Small2019, 15, 1804966.

    Google Scholar 

  249. Wang, C.; Xie, N. H.; Zhang, Y.; Huang, Z.; Xia, K.; Wang, H.; Guo, S.; Xu, B. Q.; Zhang, Y. Silk-derived highly active oxygen electrocatalysts for flexible and rechargeable Zn-air batteries. Chem. Mater.2019, 31, 1023–1029.

    CAS  Google Scholar 

  250. Zhou, B.; Zhang, M.; He, W.; Wang, H.; Jian, M.; Zhang, Y. Blue rose-inspired approach towards highly graphitic carbons for efficient electrocatalytic water splitting. Carbon2019, 150, 21–26.

    CAS  Google Scholar 

  251. You, J.; Li, M.; Ding, B.; Wu, X.; Li, C. Crab chitin-based 2D soft nanomaterials for fully biobased electric devices. Adv. Mater. 2017, 29, 1606895.

    Google Scholar 

  252. Li, Y.; Hu, Y. S.; Titirici, M. M.; Chen, L.; Huang, X. Hard carbon microtubes made from renewable cotton as high-performance anode material for sodiumion batteries. Adv. Energy Mater.2016, 6, 1600659.

  253. Song, H.; Xu, S.; Li, Y.; Dai, J.; Gong, A.; Zhu, M.; Zhu, C.; Chen, C.; Chen, Y.; Yao, Y.; Liu, B.; Song, J.; Pastel, G.; Hu, L. Hierarchically porous, ultrathick, “breathable” wood-derived cathode for lithium-oxygen batteries. Adv. Energy Mater.2018, 8, 1701203.

    Google Scholar 

  254. Shen, F.; Zhu, H.; Luo, W.; Wan, J.; Zhou, L.; Dai, J.; Zhao, B.; Han, X.; Fu, K.; Hu, L. Chemically crushed wood cellulose fiber towards high-performance sodium-ion batteries. ACS Appl, Mater. Interfaces2015, 7, 23291–23296.

    CAS  Google Scholar 

  255. Xia, T.; Zhang, X.; Zhao, J.; Li, Q.; Ao, C.; Hu, R.; Zheng, Z.; Zhang, W.; Lu, C.; Deng, Y. Flexible and conductive carbonized cotton fabrics coupled with a nanostructured Ni(OH)2 coating for high performance aqueous symmetric supercapacitors. ACS Sustain. Chem. Eng.2019, 7, 5231–5239.

    CAS  Google Scholar 

  256. Xu, X.; Zhou, J.; Nagaraju, D. H.; Jiang, L.; Marinov, V. R.; Lubineau, G.; Alshareef, H. N.; Oh, M. Flexible, highly graphitized carbon aerogels based on bacterial cellulose/lignin: catalyst-free synthesis and its application in energy storage devices. Adv. Funct. Mater.2015, 25, 3193–3202.

    CAS  Google Scholar 

  257. Ding, B.; Huang, S.; Pang, K.; Duan, Y.; Zhang, J. Nitrogen-enriched carbon nanofiber aerogels derived from marine chitin for energy storage and environmental remediation. ACS Sustain. Chem. Eng.2018, 6, 177–185.

    CAS  Google Scholar 

  258. Bao, L.; Li, X. Towards textile energy storage from cotton T-shirts. Adv. Mater.2012, 24, 3246–3252.

    CAS  PubMed  Google Scholar 

  259. Gao, Z.; Zhang, Y.; Song, N.; Li, X. Towards flexible lithium-sulfur battery from natural cotton textile. Electrochim. Acta2017, 246, 507–516.

    CAS  Google Scholar 

  260. Ma, D. L.; Ma, Y.; Chen, Z. W.; Hu, A. M. A silk fabric derived carbon fibre net for transparent capacitive touch pads and all-solid supercapacitors. J. Mater. Chem. A2017, 5, 20608–20614.

    CAS  Google Scholar 

  261. Gao, Z.; Song, N.; Zhang, Y.; Li, X. Cotton-textile-enabled, flexible lithium-ion batteries with enhanced capacity and extended lifespan. Nano Lett.2015, 15, 8194–8203.

    CAS  PubMed  Google Scholar 

  262. Kim, H. J.; Kim, J. H.; Jun, K. W.; Kim, J. H.; Seung, W. C.; Kwon, O. H.; Park, J. Y.; Kim, S. W.; Oh, I. K. Silk nanofiber-networked bio-triboelectric generator: silk bio-TEG. Adv. Energy Mater. 2016, 6, 1502329.

    Google Scholar 

  263. He, X.; Zou, H.; Geng, Z.; Wang, X.; Ding, W.; Hu, F.; Zi, Y.; Xu, C.; Zhang, S. L.; Yu, H.; Xu, M.; Zhang, W.; Lu, C.; Wang, Z. L. A hierarchically nanostructured cellulose fiber-based triboelectric nanogenerator for self-powered healthcare products. Adv. Funct. Mater.2018, 28, 1802398.

    Google Scholar 

  264. Zhang, M.; Zhao, M.; Jian, M.; Wang, C.; Yu, A.; Yin, Z.; Liang, X.; Wang, H.; Xia, K.; Liang, X.; Zhai, J.; Zhang, Y. Printable smart pattern for multifunctional energy-management e-textile. Matter2019, 1, 168–179.

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Basic Research Program of China (No. 2016YFA0200103), the National Natural Science Foundation of China (Nos. 51520105003, 51432002, 51672153 and 21975141), and the China Postdoctoral Science Foundation (No. 2019M660322).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yingying Zhang or Zhongfan Liu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jian, M., Zhang, Y. & Liu, Z. Natural Biopolymers for Flexible Sensing and Energy Devices. Chin J Polym Sci 38, 459–490 (2020). https://doi.org/10.1007/s10118-020-2379-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2379-9

Keywords

  • Biopolymers
  • Silk
  • Cellulose
  • Electronics
  • Energy devices