Mechanistic Transformations Involving Radical and Cationic Polymerizations

Abstract

Mechanistic transformation approach has been widely applied in polymer synthesis due to its unique feature combining structurally different polymers prepared by different polymerization mechanisms. Reported methods for the formation of block and graft copolymers through mechanistic transformation involve almost all polymerizations modes. However, certain polymerization processes require extensive purification processes, which can be time-consuming and problematic. Recent developments on controlled/living polymerizations involving radical and cationic mechanisms with the ability to control molecular weight and functionality led to new pathways for mechanistic transformations. In this mini-review, we systematically discussed relevant advances in the field through three main titles namely (i) from radical to cationic mechanism, (ii) from cationic to radical mechanism, and (iii) application of specific catalyst systems for both radical and cationic polymerizations.

This is a preview of subscription content, log in to check access.

References

  1. 1

    Braunecker, W. A.; Matyjaszewski, K. Controlled/living radical polymerization: Features, developments, and perspectives. Prog. Polym. Sci.2007, 32, 93–146.

    CAS  Google Scholar 

  2. 2

    Wang, J. S.; Matyjaszewski, K. Controlled/“living” radical polymerization. Halogen atom-transfer radical polymerization promoted by a Cu(I)Cu(II) redox process. Macromolecules1995, 28, 7901–7910.

    CAS  Google Scholar 

  3. 3

    Hawker, C. J.; Bosman, A. W.; Harth, E. New polymer synthesis by nitroxide mediated living radical polymerizations. Chem. Rev. 2001, 101, 3661–3688.

    CAS  PubMed  Google Scholar 

  4. 4

    Chiefari, J.; Chong, Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P. T.; Mayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.; Moad, G.; Rizzardo, E.; Thang, S. H. Living free-radical polymerization by reversible addition-fragmentation chain transfer: the RAFT process. Macromolecules1998, 31, 5559–5562.

    CAS  Google Scholar 

  5. 5

    Sawamoto, M. Modern cationic vinyl polymerization. Prog. Polym. Sci.1991, 16, 111–172.

    CAS  Google Scholar 

  6. 6

    Kamigaito, M.; Ando, T.; Sawamoto, M. Metal-catalyzed living radical polymerization. Chem. Rev.2001, 101, 3689–3745.

    CAS  PubMed  Google Scholar 

  7. 7

    Guo, X.; Choi, B.; Feng, A.; Thang, S. H. Polymer synthesis with more than one form of living polymerization method. Macromol. Rapid Commun.2018, 39, 1800479.

    Google Scholar 

  8. 8

    Higashimura, T.; Aoshima, S.; Sawamoto, M. New initiators for living cationic polymerization of vinyl compounds. Makromol. Chem. Makromol. Symp.1988, 13-4, 457–471.

    Google Scholar 

  9. 9

    Sawamoto, M.; Okamoto, C.; Higashimura, T. Hydrogen iodide zinc iodide—a new initiating system for living cationic polymerization of vinyl ethers at room-temperature. Macromolecules1987, 20, 2693–2697.

    CAS  Google Scholar 

  10. 10

    Yagci, Y.; Schnabel, W. Light-induced cationic polymerization. Makromol. Chem. Macromol. Symp.1988, 13-14, 161–174.

    CAS  Google Scholar 

  11. 11

    Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 2001, 40, 2004–2021.

    CAS  Google Scholar 

  12. 12

    Barner-Kowollik, C.; Du Prez, F. E.; Espeel, P.; Hawker, C. J.; Junkers, T.; Schlaad, H.; van Camp, W. “Clicking” polymers or just efficient linking: what is the difference? Angew. Chem. Int. Ed. 2011, 50, 60–62.

    CAS  Google Scholar 

  13. 13

    Yagci, Y.; Tasdelen, M. A. Mechanistic transformations involving living and controlled/living polymerization methods. rog. Polym. Sci.2006, 31, 1133–1170.

    CAS  Google Scholar 

  14. 14

    Burgess, F. J.; Cunliffe, A. V.; MacCallum, J. R.; Richards, D. H. Reactions to effect the transformation of anionic polymerization into cationic polymerization: 2. Synthesis and reactivities of anionically generated xylelene bromide-terminated polymers. Polymer1977, 18, 726–732.

    CAS  Google Scholar 

  15. 15

    Burgess, F. J.; Cunliffe, A. V.; MacCallum, J. R.; Richards, D. H. Reaction to effect the transformation of anionic polymerization into cationic polymerization: 1. Synthesis and reactivities of anionically generated bromine terminated polymers. Poymer1977, 18, 719–725.

    CAS  Google Scholar 

  16. 16

    Schäfer, M.; C, Wieland P.; Nuyken, O. Synthesis of new graft copolymers containing polyisobutylene by a combination of the 1,1-diphenylethylene technique and cationic polymerization. J. Polym. Sci., Part A: Polym. Chem.2002, 40, 3725–3733.

    Google Scholar 

  17. 17

    Düz, A. B.; Hizal, G.; Yagci, Y. Block copolymers by transformation of living ring opening polymerization into an initer process. Eur. Polym. J.2000, 36, 1373–1378.

    Google Scholar 

  18. 18

    Kumagai, S.; Nagai, K.; Satoh, K.; Kamigaito, M. n-stu drect mechanistic transformation from raft to living cationic polymerization for (meth)acrylate-vinyl ether block copolymers. Macromolecules2010, 43, 7523–7531.

    CAS  Google Scholar 

  19. 19

    Kahveci, M. U.; Acik, G.; Yagci, Y. Synthesis of block copolymers by combination of atom transfer radical polymerization and visible light-induced free radical promoted cationic polymerization. Macromol. Rapid Commun.2012, 33, 309–313.

    CAS  PubMed  Google Scholar 

  20. 20

    Yagci, Y. Block copolymers by combinations of cationic and radical routes 1. A new difunctional azo-oxocarbenium initiator for cationic polymerization. Polym. Commun.1985, 26, 7–8.

    CAS  Google Scholar 

  21. 21

    Galli, G.; Chiellini, E.; Yagci, Y.; Serhatli, E. I.; Laus, M.; Bignozzi, M. C; Angeloni, A. S. Block copolymers with crystalline and side-chain liquid crystalline blocks. Makromol. Chem. Rapid Commun. 1993, 14, 185–193.

    CAS  Google Scholar 

  22. 22

    Hizal, G.; Tasdemir, H.; Yagci, Y. Block copolymers by combination of cationic and radical routes: 5. Polymerization of styrene initiated by 4,4′-azobis(4-cyanopentanoyl chloride). olymer1990, 31, 1803–1806.

    CAS  Google Scholar 

  23. 23

    Yagci, Y.; Onen, A.; Schnabel, W. Block copolymers by combination radical and promoted cationic polymerization routes. Macromolecules1991, 24, 4620–4623.

    CAS  Google Scholar 

  24. 24

    Hepuzer, Y.; Yagci, Y.; Biedron, T.; Kubisa, P. Photoactive epichlorohydrin 2. Photoinitiated free-radical and promoted cationic polymerization by using polyepichlorohydrin with benzoin terminal groups. Angew. Makromol. Chem.1996, 237 163–171.

    CAS  Google Scholar 

  25. 25

    Onen, A.; Yagci, Y.; Schnabel, W. Synthesis of benzoin terminated poly(tetrahydrofuran)s. Angew. Makromol. Chem.1996243 143–149.

    CAS  Google Scholar 

  26. 26

    Hizal, G.; Yagci, Y.; Schnabel, W. N-alkoxy pyridinium ion terminated polytetrahydrofurans—synthesis and their use in photoinitiated block copolymerization. Polymer1994, 5, 4443–4448.

    Google Scholar 

  27. 27

    Le, D.; Phan, T. N. T.; Autissier, L; Charles, L; Gigmes, D. A well-defined block copolymer synthesis via living cationic polymerization and nitroxide-mediated polymerization using carboxylic acid-based alkoxyamines as a dual initiator. Polym Chem.2016, 7, 1659–1667.

    CAS  Google Scholar 

  28. 28

    Yamada, K.; Miyazaki, M.; Ohno, K.; Fukuda, T.; Minoda, M. Atom transfer radical polymerization of polyvinyl ether) macromonomers. Macromolecules1999, 32, 290–293.

    CAS  Google Scholar 

  29. 29

    Li, M.; Zhang, L; Tao, M.; Cheng, Z.; Zhu, X. Living cationic polymerization of bisazobenzene-containing vinyl ether and synthesis of a graft copolymer by combination with ATRP. Polym. Chem.2014, 5, 4076–4082.

    CAS  Google Scholar 

  30. 30

    Zhu, Y.; Storey, R. F. Synthesis of polyisobutylene-based miktoarm star polymers from a dicationic monoradical dual initiator. Macromolecules2012, 45, 5347–5357.

    CAS  Google Scholar 

  31. 31

    Sugihara, S.; Konegawa, N.; Maeda, Y. HCl•Et2 O-catalyzed metal-free RAFT cationic polymerization: one-pot transformation from metal-free living cationic polymerization to RAFT radical polymerization 1. Macromolecules2015, 48, 5120–5131.

    CAS  Google Scholar 

  32. 32

    Sugihara, S.; Yamashita, K.; Matsuzuka, K.; Ikeda, I.; Maeda, Y. Transformation of living cationic polymerization of vinyl ethers to RAFT polymerization mediated by a carboxylic RAFT agent. Macromolecules2012, 45, 794–804.

    CAS  Google Scholar 

  33. 33

    Yoshida, E.; Sugita, A. Synthesis of poly(tetrahydrofuran) with a nitroxyl radical at the chain end and its application to living radical polymerization. Macromolecules1996, 29, 6422–6426.

    CAS  Google Scholar 

  34. 34

    Yildirim, T. G.; Hepuzer, Y.; Hizal, G.; Yagci, Y. Synthesis of block copolymers by transformation of photosensitized cationic polymerization to stable free radical polymerization. Polymer1999, 40, 3885–3890.

    CAS  Google Scholar 

  35. 35

    Kajiwara, A.; Matyjaszewski, K. Formation of block copolymers by transformation of cationic ring-opening polymerization to atom transfer radical polymerization (ATRP). Macromolecules1998, 31, 3489–3493.

    CAS  Google Scholar 

  36. 36

    Puglisi, A.; Murtezi, E.; Yilmaz, G.; Yagci, Y. Synthesis of block copolymers by mechanistic transformation from photoinitiated cationic polymerization to a RAFT process. Polym. Chem.2017, 8, 7307–7310.

    CAS  Google Scholar 

  37. 37

    Uchiyama, M.; Satoh, K.; Kamigaito, M. Cationic RAFT polymerization using ppm concentrations of organic acid. Angew. Chem. Int. Ed.2015, 54, 1924–1928.

    CAS  Google Scholar 

  38. 38

    Ciftci, M.; Yoshikawa, Y.; Yagci, Y. Living cationic polymerization of vinyl ethers through a photoinduced radical oxidation/addition/deactivation sequence. Angew. Chem. Int. Ed. 2017, 56, 519–523.

    CAS  Google Scholar 

  39. 39

    Ciftci, M.; Yagci, Y. Block copolymers by mechanistic transformation from proad to iniferter process. Macromol. Rapid Commun.2018, 39.

  40. 40

    Li, J.; Zhang, M.; Pan, X.; Zhang, Z.; Perrier, S.; Zhu, J.; Zhu, X. Visible light induced controlled cationic polymerization by in situ generated catalyst from manganese carbonyl. Chem. Commun. 2019, 55, 7045–7048.

    CAS  Google Scholar 

  41. 41

    Aoshima, H.; Satoh, K.; Kamigaito, M. In situ direct mechanistic transformation from FeCl3-catalyzed living cationic to radical polymerizations. Macromol. Symp.2013, 323, 64–74.

    CAS  Google Scholar 

  42. 42

    Satoh, K.; Hashimoto, H.; Kumagai, S.; Aoshima, H.; Uchiyama, M.; Ishibashi, R.; Fujiki, Y.; Kamigaito, M. One-shot controlled/living copolymerization for various comonomer sequence distributions via dual radical and cationic active species from RAFT terminals. Polym. Chem.2017, 8, 5002–5011.

    CAS  Google Scholar 

  43. 43

    Peterson, B. M.; Kottisch, V.; Supej, M. J.; Fors, B. P. On demand switching of polymerization mechanism and monomer selectivity with orthogonal stimuli. ACS Cent. Sci.2018, 4, 1228–1234.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Uchiyama, M.; Satoh, K.; McKenzie, T. G.; Fu, Q.; Qiao, G. G.; Kamigaito, M. Diverse approaches to star polymers via cationic and radical RAFT cross-linking reactions using mechanistic transformation. Polym. Chem.2017, 8, 5972–5981.

    CAS  Google Scholar 

  45. 45

    Guerre, M.; Uchiyama, M.; Folgado, E.; Semsarilar, M.; Ameduri, B.; Satoh, K.; Kamigaito, M.; Ladmiral, V. Combination of cationic and radical RAFT polymerizations: a versatile route to well-defined poly(ethyl vinyl ether)-block-poly(vinylidene fluoride) block copolymers. ACS Macro Lett.2017, 6, 393–398.

    CAS  Google Scholar 

  46. 46

    Guerre, M.; Uchiyama, M.; Lopez, G.; Ameduri, B.; Satoh, K.; Kamigaito, M.; Ladmiral, V. Synthesis of PEVE-b-P(CTFE-alt-EVE) block copolymers by sequential cationic and radical RAFT polymerization. Polym. Chem.2018, 9, 352–361.

    CAS  Google Scholar 

  47. 47

    Aoshima, H.; Uchiyama, M.; Satoh, K.; Kamigaito, M. Interconvertible living radical and cationic polymerization through reversible activation of dormant species with dual activity. Angew. Chem. Int. Ed.2014, 53, 10932–10936.

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yusuf Yagci.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yilmaz, G., Yagci, Y. Mechanistic Transformations Involving Radical and Cationic Polymerizations. Chin J Polym Sci 38, 205–212 (2020). https://doi.org/10.1007/s10118-020-2367-0

Download citation

Keywords

  • Transformation
  • Radical polymerization
  • Cationic polymerization
  • Controlled/living polymerization
  • Photopolymerization