Skip to main content

Advertisement

Log in

Structural Design and Application of Azo-based Supramolecular Polymer Systems

  • Review
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

This article presents a brief overview of recent advances in azo-containing supramolecular systems. In literature, it has been shown that azo supramolecular polymers and their composite materials exhibit fast and intelligent responses to various external stimuli, such as temperature, pH change, redox reagents, ligands, coupling reagents, etc. In applications, these systems are widely used for molecular motors, shape memory, liquid crystal, solar thermal energy storage, signal transmission, intelligent encryption, and other purposes. Furthermore, these systems can function as key components for device upgrade processing. However, the design and rules of azo supramolecular polymers are still not supported by an exact theory. Information about the relationship between the spatial structure and behavior is lacking, and new supramolecular materials cannot be designed by adding functional moieties to known azo polymers. Based on the current research status, this review mainly summarizes the structural design principles as well as structures and applications of known azo supramolecules; meanwhile, it highlights the emerging development fields, recent advances, and prospects in fabricating self-assembling intelligent supramolecular systems with azo supramolecular polymers as responsive units. The goal of this review is to bring new inspiration to researchers who want to optimize the chemical structure, steric conformation, electrostatic environment, and specific molecular functionalization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lehn, J. M. Supramolecular chemistry-scope and perspectives molecules, supermolecules, and molecular devices (Nobel Lecture). Angew. Chem. Int. Ed. 1988, 27, 89–112.

    Google Scholar 

  2. Yagai, S.; Karatsu, T.; Kitamura, A. Photocontrollable self-assembly. Chem. Eur. J. 2005, 11, 4054–4063.

    CAS  PubMed  Google Scholar 

  3. Cheng, M. J.; Zhang, Q.; Shi, F. Macroscopic supramolecular assembly and its applications. Chinese J. Polym. Sci. 2018, 36, 306–321.

    CAS  Google Scholar 

  4. Cao, C.; Li, Y.; Feng Y. Y.; Long, P.; An, H. R.; Qin, C. Q.; Han, J. K.; Li, S. W.; Feng, W. A sulfonimide-based alternating copolymer as a single-ion polymer electrolyte for highperformance lithium-ion batteries. J. Mater. Chem. A2017, 5, 22519–22526.

    CAS  Google Scholar 

  5. Archut, A.; Vögtle, F.; De Cola, L.; Azzellini, G. C.; Balzani, V.; Ramanujam, P. S.; Berg, R. H. Azobenzene functionalized cascade molecules: Photoswitchable supramolecular systems. Chem. Eur. J. 1998, 4, 699–706.

    CAS  Google Scholar 

  6. Fabbrizzi, L.; Poggi, A. Sensors and switches from supra-molecular chemistry. Chem. Soc. Rev. 1995, 24, 197–202.

    CAS  Google Scholar 

  7. Lehn, J. M. Supramolecular chemistry: Receptors, catalysts, and carriers. Science1985, 227, 849–856.

    CAS  PubMed  Google Scholar 

  8. Chu, Z.; Han, Y.; Bian, T.; De, S.; Král, P.; Klajn, R. Supra-molecular control of azobenzene switching on nanoparticles. J. Am. Chem. Soc. 2018, 141, 1949–1960.

    Google Scholar 

  9. Ma, X.; Zhao, Y. Biomedical applications of supramolecular systems based on host-guest interactions. Chem. Rev.2014, 115, 7794–7839.

    PubMed  Google Scholar 

  10. Mattia, E.; Otto, S. Supramolecular systems chemistry. Natt. Nanotech.2015, 10, 111.

    CAS  Google Scholar 

  11. Gilday, L. C.; Robinson, S. W.; Barendt, T. A.; Langton, M. J.; Mullaney, B. R.; Beer, P. D. Halogen bonding in supra-molecular chemistry. Chem. Rev.2015, 115, 7118–7195.

    CAS  PubMed  Google Scholar 

  12. Lehn, J. M. Supramolecular chemistry: Where from? Where to? Chem. Soc. Rev.2017, 46, 2378–2379.

    CAS  PubMed  Google Scholar 

  13. Delbianco, M.; Bharate, P.; Varela-Aramburu, S.; Seeberger, P. H. Carbohydrates in supramolecular chemistry. Chem. Rev.2015, 116, 1693–1752.

    PubMed  Google Scholar 

  14. Zeng, F.; Zimmerman, S. C. Dendrimers in supramolecular chemistry: From molecular recognition to self-assembly. Chem. Rev.1997, 97, 1681–1712.

    CAS  PubMed  Google Scholar 

  15. Huang, F.; Scherman, O. A. Supramolecular polymers. Chem. Soc. Rev.2012, 41, 5879–5880.

    CAS  PubMed  Google Scholar 

  16. Stupp, S. I.; Keser, M.; Tew, G. N. Functionalized supramolecular materials. Polymer1998, 39, 4505–4508.

    Google Scholar 

  17. Bernhardt, P. V. A supramolecular synthon for H-bonded transition metal arrays. Inorg. Chem.1999, 38, 3481–3483.

    CAS  PubMed  Google Scholar 

  18. Liu, Z. F.; Hashimoto, K.; Fujishima, A. Photoelectrochemical information storage using an azobenzene derivative. Nature1990, 347, 658.

    CAS  Google Scholar 

  19. Freundlich, H.; Heller, W. The adsorption of cis- and trans-azobenzene. J. Am. Chem. Soc.1939, 61, 2228–2230.

    CAS  Google Scholar 

  20. Kumar, S.; Dinesha, P.; Rosen, M. A. Effect of injection pressure on the combustion, performance and emission characteristics of a biodiesel engine with cerium oxide nanoparticle additive. Energy2019, 185, 1163–1173.

    CAS  Google Scholar 

  21. Hartley, G. S. The cis-form of azobenzene. Nature1937, 140, 281.

    CAS  Google Scholar 

  22. Gauglitz, G.; Hubig, S. Chemical actinometry in the UV by azobenzene in concentrated solution: A convenient method. J. Photochem1985, 30, 121–125.

    CAS  Google Scholar 

  23. Balzani, V.; Credi, A.; Raymo, F. M.; Stoddart, J. F. Artificial molecular machines. Angew. Chem. Int. Ed.2000, 99, 3348–3391.

    Google Scholar 

  24. Ueno, A.; Yoshimura, H.; Saka, R.; Osa, T. Photocontrol of binding ability of capped cyclodextrin. J. Am. Chem. Soc.1979, 101, 2779–2780.

    CAS  Google Scholar 

  25. Emoto, A.; Uchida, E.; Fukuda, T. Optical and physical applications of photocontrollable materials: Azobenzene-containing and liquid crystalline polymers. Polymers2012, 4, 150–186.

    CAS  Google Scholar 

  26. Tejedor, R. M.; Oriol, L.; Serrano, J. L.; Partal Ureña, F.; López González, J. J. Photoinduced chiral nematic organization in an achiral glassy nematic azopolymer. Adv. Funct. Mater.2007, 17, 3486–3492.

    CAS  Google Scholar 

  27. Priewisch, B.; Rück-Braun, K. Efficient preparation of nitrosoarenes for the synthesis of azobenzenes. J. Org. Chem.2005, 70, 2350–2352.

    CAS  PubMed  Google Scholar 

  28. Feng, W.; Luo, W.; Feng, Y. Photo-responsive carbon nanomaterials functionalized by azobenzene moieties: Structures, properties and application. Nanoscale2012, 4, 6118–6134.

    CAS  PubMed  Google Scholar 

  29. Beharry, A. A.; Woolley, G. A. Azobenzene photoswitches for biomolecules. Chem. Soc. Rev.2011, 40, 4422–4437.

    CAS  PubMed  Google Scholar 

  30. Goulet-Hanssens, A.; Barrett, C. J. Photo-control of biological systems with azobenzene polymers. J. Polym. Sci., Part A: Polym. Chem.2013, 51, 3058–3070.

    CAS  Google Scholar 

  31. Dong, R.; Liu, Y.; Zhou, Y.; Yan, D.; Zhu, X. Photo-reversible supramolecular hyperbranched polymer based on host-guest interactions. Polym. Chem.2011, 2, 2771–2774.

    CAS  Google Scholar 

  32. Qin, M.; Xu, Y.; Cao, R.; Feng, W.; Chen, L. Efficiently controlling the 3D thermal conductivity of a polymer nanocomposite via a hyperelastic double-continuous network of graphene and sponge. Adv. Funct. Mater.2018, 28, 1805053.

    Google Scholar 

  33. Poutanen, M.; Ikkala, O.; Priimagi, A. Structurally controlled dynamics in azobenzene-based supramolecular self-assemblies in solid state. Macromolecules2016, 49, 4095–4101.

    CAS  Google Scholar 

  34. Vapaavuori, J.; Ras, R. H.; Kaivola, M.; Bazuin, C. G.; Priimagi, A. From partial to complete optical erasure of azobenzene-polymer gratings: Effect of molecular weight. J. Mater. Chem. C2015, 3, 11011–11016.

    CAS  Google Scholar 

  35. Wie, J. J.; Wang, D. H.; Lee, K. M.; White, T. J.; Tan, L. S. The contribution of hydrogen bonding to the photomechanical response of azobenzene-functionalized polyamides. J. Mater. Chem. C2018, 6, 5964–5974.

    CAS  Google Scholar 

  36. Oscurato, S. L.; Salvatore, M.; Maddalena, P.; Ambrosio, A. From nanoscopic to macroscopic photo-driven motion in azobenzene-containing materials. Nanophotonics2018, 7, 1387–1422.

    CAS  Google Scholar 

  37. Yagai, S.; Nakajima, T.; Karatsu, T.; Saitow, K. I.; Kitamura, A. Phototriggered self-assembly of hydrogen-bonded rosette. J. Am. Chem. Soc.2004, 126, 11500–11508.

    CAS  PubMed  Google Scholar 

  38. Zhan, T. G.; Lin, M. D.; Wei, J.; Liu, L. J.; Yun, M. Y.; Wu, L; Zheng, S. T.; Yin, H. H.; Li, C. K.; Zhang, K. D. Visible-light responsive hydrogen-bonded supramolecular polymers based on ortho-tetrafluorinated azobenzene. Polym. Chem.2017, 8, 7384–7389.

    CAS  Google Scholar 

  39. Groombridge, A. S.; Palma, A.; Parker, R. M.; Abell, C.; Scherman, O. A. Aqueous interfacial gels assembled from small molecule supramolecular polymers. Chem. Sci.2017, 8, 1350–1355.

    CAS  PubMed  Google Scholar 

  40. Du, M.; Li, L.; Zhang, J.; Li, K.; Cao, M.; Mo, L.; Hua, G.; Chen, Y.; Yu, H.; Yang, H. Photoresponsive iodine-bonded liquid crystals based on azopyridine derivatives with a low phase-transition temperature. Liquid Crystals2019, 46, 37–44.

    CAS  Google Scholar 

  41. Chen, Y.; Yu, H.; Zhang, L.; Yang, H.; Lu, Y. Photoresponsive liquid crystals based on halogen bonding of azopyridines. Chem. Commun.2014, 50, 9647–9649.

    CAS  Google Scholar 

  42. Wei, P.; Yan, X.; Huang, F. Supramolecular polymers constructed by orthogonal self-assembly based on host-guest and metal-ligand interactions. Chem. Soc. Rev.2015, 44, 815–832.

    CAS  PubMed  Google Scholar 

  43. Zhou, W.; Kobayashi, T.; Zhu, H.; Yu, H. Electrically conductive hybrid nanofibers constructed with two amphiphilic salt components. Chem. Commun.2011, 47, 12768–12770.

    CAS  Google Scholar 

  44. Gao, J.; He, Y.; Xu, H.; Song, B.; Zhang, X.; Wang, Z.; Wang, X. Azobenzene-containing supramolecular polymer films for laser-induced surface relief gratings. Chem. Mater.2007, 19, 14–17.

    CAS  Google Scholar 

  45. Cui, L.; Zhao, Y. Azopyridine side chain polymers: An efficient way to prepare photoactive liquid crystalline materials through self-assembly. Chem. Mater.2004, 16, 2076–2082.

    CAS  Google Scholar 

  46. Shibaev, P. V.; Schaumburg, K.; Plaksin, V. Responsive chiral hydrogen-bonded polymer composites. Chem. Mater.2002, 14, 959–961.

    CAS  Google Scholar 

  47. Zettsu, N.; Ogasawara, T.; Mizoshita, N.; Nagano, S.; Seki, T. Photo-triggered surface relief grating formation in supra-molecular liquid crystalline polymer systems with detachable azobenzene unit. Adv. Mater.2008, 20, 516–521.

    CAS  Google Scholar 

  48. Li, S.; Feng, Y.; Long, P.; Qin, C.; Feng, W. The light-switching conductance of an anisotropic azobenzene-based polymer close-packed on horizontally aligned carbon nanotubes. J. Mater. Chem. C2017, 5, 5068–5075.

    CAS  Google Scholar 

  49. Hu, Y.; Wu, K. Y.; Zhu, T.; Shen, P.; Zhou, Y.; Li, X.; Wang, C. L.; Tu, Y.; Li, C. Y. Unique supramolecular liquid-crystal phases with different two-dimensional crystal layers. Angew. Chem.2018, 130, 13642–13646.

    Google Scholar 

  50. Huang, C. W.; Ji, W. Y.; Kuo, S. W. Stimuli-eesponsive supramolecular conjugated polymer with phototunable surface relief grating. Polym. Chem.2018, 9, 2813–2820.

    CAS  Google Scholar 

  51. Mosciatti, T.; Bonacchi, S.; Gobbi, M.; Ferlauto, L.; Liscio, F.; Giorgini, L.; Orgiu, E.; Samorì, P. Optical input/electrical output memory elements based on a liquid crystalline azobenzene polymer. ACS Appl. Mater. Interface2016, 8, 6563–6569.

    CAS  Google Scholar 

  52. Jansze, S. M.; Cecot, G.; Severin, K. Reversible disassembly of metallasupramolecular structures mediated by a metastable-state photoacid. Chem. Sci.2018, 9, 4253–4257.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Park, J.; Feng, D.; Yuan, S.; Zhou, H. C. Photochromic metal-organic frameworks: Reversible control of singlet oxygen generation. Angew. Chem. Int. Ed.2015, 54, 430–435.

    CAS  Google Scholar 

  54. Vapaavuori, J.; Bazuin, C. G.; Priimagi, A. Supramolecular design principles for efficient photoresponsive polymer-azobenzene complexes. J. Mater. Chem. C2018, 6, 2168–2188.

    CAS  Google Scholar 

  55. Wang, L.; Yin, L.; Zhang, W.; Zhu, X.; Fujiki, M. Circularly polarized light with sense and wavelengths to regulate azobenzene supramolecular chirality in optofluidic medium. J. Am. Chem. Soc.2017, 139, 13218–13226.

    CAS  Google Scholar 

  56. Cui, Y.; Gong, H.; Wang, Y.; Li, D.; Bai, H. A thermally insulating textile inspired by polar bear hair. Adv. Mater.2018, 30, 1706807.

    Google Scholar 

  57. Li, Z. Y.; Chen, Y.; Wu, H.; Liu, Y. Photoinduced assembly/disassembly of supramolecular nanoparticle based on polycationic cyclodextrin and azobenzene-containing surfactant. Chemistry Select2018, 3, 3203–3207.

    CAS  Google Scholar 

  58. Yu, H.; Liu, H.; Kobayashi, T. Fabrication and photoresponse of supramolecular liquid-crystalline microparticles. ACS Appl. Mater. Interface2011, 3, 1333–1340.

    CAS  Google Scholar 

  59. Sun, Z.; Huang, Q.; He, T.; Li, Z.; Zhang, Y.; Yi, L. Multistimuli-responsive supramolecular gels: Design rationale, recent advances, and perspectives. Chem. Phys. Chem.2014, 15, 2421–2430.

    CAS  PubMed  Google Scholar 

  60. Zhang, X.; Ma, X.; Wang, K.; Lin, S.; Zhu, S.; Dai, Y.; Xia, F. Recent advances in cyclodextrin-based light-responsive supra-molecular systems. Macromol. Rapid Commun.2018, 39, 1800142.

    Google Scholar 

  61. Fox, J. D.; Rowan, S. J. Supramolecular polymerizations and main-chain supramolecular polymers. Macromolecules2009, 42, 6823–6835.

    CAS  Google Scholar 

  62. Schoelch, S.; Vapaavuori, J.; Rollet, F. G.; Barrett, C. J. The orange side of disperse red 1: Humidity-driven color switching in supramolecular azo-polymer materials based on reversible dye aggregation. Macromol. Rapid. Commun.2017, 38, 1600582.

    Google Scholar 

  63. Li, Z. Y.; Zhang, Y.; Zhang, C. W.; Chen, L. J.; Wang, C.; Tan, H.; Yu, Y.; Li, X.; Yang, H. B. Cross-linked supra-molecular polymer gels constructed from discrete multi-pillar. J. Am. Chem. Soc.2014, 136, 8577–8589.

    CAS  PubMed  Google Scholar 

  64. Baroncini, M.; Bergamini, G. Azobenzene: A photoactive building block for supramolecular architectures. Chem. Rec.2017, 17, 700–712.

    CAS  PubMed  Google Scholar 

  65. Stoffelen, C.; Voskuhl, J.; Jonkheijm, P.; Huskens, J. Dual stimuli-responsive self-assembled supramolecular nanoparticles. Angew. Chem. Int. Ed.2014, 53, 3400–3404.

    CAS  Google Scholar 

  66. Hou, P. P.; Zhang, Z. Y.; Wang, Q.; Zhang, M. Y.; Shen, Z.; Fan, X. H. Hierarchical structures in a main-chain/side-chain combined liquid crystalline polymer with a polynorbornene backbone and multi-benzene side-chain mesogens. Macromolecules2016, 49, 7238–7245.

    CAS  Google Scholar 

  67. Chen, H.; Ma, X.; Wu, S.; Tian, H. A rapidly self-healing supramolecular polymer hydrogel with photostimulated room-temperature phosphorescence responsiveness. Angew. Chem. Int Ed.2014, 53, 14149–14152.

    CAS  Google Scholar 

  68. Shen, P.; Qiu, L. Dual-responsive recurrent self-assembly of a supramolecular polymer based on the host-guest complexation interaction between β-cyclodextrin and azobenzene. New J. Chem.2018, 42, 3593–3601.

    CAS  Google Scholar 

  69. Kuad, P.; Miyawaki, A.; Takashima, Y.; Yamaguchi, H.; Harada, A. External stimulus-responsive supramolecular structures formed by a stilbene cyclodextrin dimer. J. Am. Chem. Soc.2007, 129, 12630–12631.

    CAS  PubMed  Google Scholar 

  70. Zhang, X.; Feng, Y.; Huang, D.; Li, Y.; Feng, W. Investigation of optical modulated conductance effects based on a graphene oxide-azobenzene hybrid. Carbon2010, 48, 3236–3241.

    CAS  Google Scholar 

  71. Bortolus, P.; Monti, S. Cis ⇌ trans photoisomerization of azobenzene-cyclodextrin inclusion complexes. J. Phys. Chem.1987, 91, 5046–5050.

    CAS  Google Scholar 

  72. Wang, Y.; Ma, N.; Wang, Z.; Zhang, X. Photocontrolled reversible supramolecular assemblies of an azobenzene-containing surfactant with α-cyclodextrin. Angew. Chem. Int. Ed.2014, 46, 2823–2826.

    Google Scholar 

  73. Zhang, X.; Feng, Y.; Lv, P.; Shen, Y.; Feng, W. Enhanced reversible photoswitching of azobenzene unctionalized graphene oxide hybrids. Langmuir2010, 26, 18508–18511.

    CAS  PubMed  Google Scholar 

  74. Leenders, C. M.; Albertazzi, L.; Mes, T.; Koenigs, M. M.; Palmans, A. R.; Meijer, E. W. Supramolecular polymerization in water harnessing both hydrophobic effects and hydrogen bond formation. Chem. Commun.2013, 49, 1963–1965.

    CAS  Google Scholar 

  75. Nie, J.; Liu, X.; Yan, Y.; Zhang, H. Supramolecular hydrogen-bonded photodriven actuators based on an azobenzene-con-taining main-chain liquid crystalline poly(ester-amide). J. Mater. Chem. C2017, 5, 10391–10398.

    CAS  Google Scholar 

  76. Toh, C. L.; Xu, J.; Lu, X.; He, C. Synthesis and characterisation of main-chain hydrogen-bonded supramolecular liquid crystalline complexes formed by azo-containing compounds. Liquid Crystals2008, 35, 241–251.

    CAS  Google Scholar 

  77. Rogness, D. C.; Riedel, P. J.; Sommer, J. R.; Reed, D. F.; Wiegel, K. N. Supramolecular main chain liquid crystalline polymers utilizing azopyridine derivatives. Liquid Crystals2006, 33, 567–572.

    CAS  Google Scholar 

  78. Sun, R.; Xue, C.; Ma, X.; Gao, M.; Tian, H.; Li, Q. Light-driven linear helical supramolecular polymer formed by molecular-recognition-directed self-assembly of bis(p-sulfon-atocalix[4] arene) and pseudorotaxane. J. Am. Chem. Soc.2013, 135, 5990–5993.

    CAS  PubMed  Google Scholar 

  79. Haque, H. A.; Hara, M.; Nagano, S.; Seki, T. Photoinduced inplane motions of azobenzene mesogens affected by the flexibility of underlying amorphous chains. Macromolecules2013, 46, 8275–8283.

    CAS  Google Scholar 

  80. Dai, Y.; Zhang, X. Dual stimuli-responsive supramolecular polymeric nanoparticles based on poly(α-cyclodextrin) and acetal-modified β-cyclodextrin-azobenzene. J. Polym. Res.2018, 25, 102.

    Google Scholar 

  81. Haque, H. A.; Kakehi, S.; Hara, M.; Nagano, S.; Seki, T. High-density liquid-crystalline azobenzene polymer brush attained by surface-initiated ring-opening metathesis polymerization. Langmuir2013, 29, 7571–7575.

    CAS  PubMed  Google Scholar 

  82. Maity, C.; Hendriksen, W. E.; van Esch, J. H.; Eelkema, R. Spatial structuring of a supramolecular hydrogel by using a visible-light triggered catalyst. Angew. Chem. Int. Ed.2015, 54, 998–1001.

    CAS  Google Scholar 

  83. Lee, S.; Oh, S.; Lee, J.; Malpani, Y.; Jung, Y. S.; Kang, B.; Lee, J. Y.; Ozasa, K.; Isoshima, T.; Lee, S. Y.; Hara, M.; Hashizume, D.; Hara, M. Stimulus-responsive azobenzene supramolecules: Fibers, gels, and hollow spheres. Langmuir2013, 29, 5869–5877.

    CAS  PubMed  Google Scholar 

  84. Kim, D. Y.; Shin, S.; Yoon, W. J.; Choi, Y. J.; Hwang, J. K.; Kim, J. S.; Lee C. R.; Choi, T. L.; Jeong, K. U. From smart denpols to remote-controllable actuators: Hierarchical superstructures of azobenzene-based polynorbornenes. Adv. Funct. Mater.2017, 27, 1606294.

    Google Scholar 

  85. Fréchet, J. M. Dendrimers and supramolecular chemistry. Proc. Natl. Acad. Sci.2002, 99, 4782–4787.

    PubMed  Google Scholar 

  86. Qin, C.; Feng, Y.; Luo, W.; Cao, C.; Hu, W.; Feng, W. A supramolecular assembly of cross-linked azobenzene/polymers for a high-performance light-driven actuator. J. Mater. Chem. A2015, 3, 16453–16460.

    CAS  Google Scholar 

  87. Li, W.; Zhang, A.; Feldman, K.; Walde, P.; Schlüter, A. D. Thermoresponsive dendronized polymers. Macromolecules2008, 41, 3659–3667.

    CAS  Google Scholar 

  88. Roeser, J.; Moingeon, F.; Heinrich, B.; Masson, P.; Arnaud-Neu, F.; Rawiso, M.; Méry, S. Dendronized polymers with peripheral oligo(ethylene oxide) chains: Thermoresponsive behavior and shape anisotropy in solution. Macromolecules2011, 44, 8925–8935.

    CAS  Google Scholar 

  89. Liu, L.; Li, W.; Liu, K.; Yan, J.; Hu, G.; Zhang, A. Comblike thermoresponsive polymers with sharp transitions: Synthesis, characterization, and their use as sensitive colorimetric sensors. Macromolecules2011, 44, 8614–8621.

    CAS  Google Scholar 

  90. Chivers, P. R.; Smith, D. K. Shaping and structuring supra-molecular gels. Nature Rev. Mater.2019, 1, 463–478.

    Google Scholar 

  91. Yagai, S.; Kitamura, A. Recent advances in photoresponsive supramolecular self-assemblies. Chem. Soc. Rev.2008, 37, 1520–1529.

    CAS  PubMed  Google Scholar 

  92. Stoychev, G.; Kirillova, A.; Ionov, L. Light-responsive shape-changing polymers. Adv. Opt. Mater.2019, 1900067.

  93. Kato, T.; Hirota, N.; Fujishima, A.; Fréchet, J. M. Supra-molecular hydrogen-bonded liquid-crystalline polymer complexes. Design of side-chain polymers and a host-guest system by noncovalent interaction. J. Polym. Sci., Part A: Polym. Chem.1996, 34, 57–62.

    CAS  Google Scholar 

  94. Wiedbrauk, S.; Dube, H. Hemithioindigo—An emerging photoswitch. Tetrahedron Lett.2015, 56, 4266–4274.

    CAS  Google Scholar 

  95. Yao, X.; Li, T.; Wang, J.; Ma, X.; Tian, H. Recent progress in photoswitchable supramolecular self-assembling systems. Adv. Optical Mater.2016, 4, 1322–1349.

    CAS  Google Scholar 

  96. Wang, H.; Zhu, C. N.; Zeng, H.; Ji, X.; Xie, T.; Yan, X.; Wu, Z.; Huang, F. Reversible ion-conducting switch in a novel single-ion supramolecular hydrogel enabled by photoresponsive host-guest molecular recognition. Adv. Mater.2019, 31, 1807328.

    Google Scholar 

  97. Huang, H.; Orlova, T.; Matt, B; Katsonis, N. Long lived supramolecular helices promoted by fluorinated photoswitches. Macromol. Rapid Commun.2018, 39, 1700387.

    Google Scholar 

  98. Ren, H.; Chen, D.; Shi, Y.; Yu, H.; Fu, Z.; Yang, W. Charged end-group terminated poly(N-isopropylacrylamide)-b-poly(carboxylic azo) with unusual thermoresponsive behaviors. Macromolecules2018, 51, 3290–3298.

    CAS  Google Scholar 

  99. Yang, C.; Chen, L.; Huang, H.; Lu, Y.; Yi, J. Synthesis and properties of thermo-responsive azobenzene-based supra-molecular dendronized copolymer. Polym. Bull.2018, 1–11.

  100. Si, Q.; Feng, Y.; Yang, W.; Fu, L.; Yan, Q.; Dong, L. P.; Feng, W. Controllable and stable deformation of a self-healing photo-responsive supramolecular assembly for an optically actuated manipulator arm. ACS Appl. Mater. Interface2018, 10, 29909–29917.

    CAS  Google Scholar 

  101. Qin, C.; Feng, Y.; An, H.; Han, J.; Cao, C.; Feng, W. Tetracarboxylated azobenzene/polymer supramolecular assemblies as high-performance multiresponsive actuators. ACS Appl. Mater. Interface2017, 9, 4066–4073.

    CAS  Google Scholar 

  102. Shen, Y. T.; Deng, K.; Zhang, X. M.; Feng, W.; Zeng, Q. D.; Wang, C.; Gong, J. R. Switchable ternary nanoporous supra-molecular network on photo-regulation. Nano Lett.2011, 11, 3245–3250.

    CAS  PubMed  Google Scholar 

  103. Goodman, M.; Falxa, M. L. Conformational aspects of polypeptide structure. XXIII. Photoisomerization of azoaromatic polypeptides. J. Am. Chem. Soc.1967, 89, 3863–3867.

    CAS  PubMed  Google Scholar 

  104. Yu, H.; Ikeda, T. Photocontrollable liquid-crystalline actuators. Adv. Mater.2011, 23, 2149–2180.

    CAS  PubMed  Google Scholar 

  105. Pawlicka, A.; Sabadini, R. C.; Nunzi, J. M. Reversible light-induced solubility of disperse red 1 dye in a hydroxypropyl cellulose matrix. Cellulose2018, 25, 2083–2090.

    CAS  Google Scholar 

  106. Drotlef, D. M.; Amjadi, M.; Yunusa, M.; Sitti, M. Bioinspired composite microfibers for skin adhesion and signal amplification of wearable sensors. Adv. Mater.2017, 29, 1701353.

    Google Scholar 

  107. Feng, Y.; Feng, W. Photo-responsive perylene diimid-azobenzene dyad: Photochemistry and its morphology control by self-assembly. Opt. Mater.2008, 30, 876–880.

    CAS  Google Scholar 

  108. Feng, Y.; Feng, W.; Noda, H.; Sekino, T.; Fujii, A.; Ozaki, M.; Yoshino, K. Synthesis of photoresponsive azobenzene chromophore-modified multi-walled carbon nanotubes. Carbon2007, 12, 2445–2448.

    Google Scholar 

  109. Zhao, X.; Feng, Y.; Qin, C.; Yang, W.; Si, Q.; Feng, W. Controlling heat release from a close-packed bisazobenzene-reduced-graphene-oxide assembly film for high-energy solidstate photothermal fuels. ChemSusChem2077, 10, 1395–1404.

    Google Scholar 

  110. Yang, W.; Feng, Y.; Si, Q.; Yan, Q.; Long, P.; Dong, L.; Fu, L.; Feng, W. Efficient cycling utilization of solar-thermal energy for thermochromic displays with controllable heat output. J. Mater. Chem. A2019, 7, 97–106.

    CAS  Google Scholar 

  111. Li, M.; Feng, Y.; Liu, E.; Qin, C.; Feng, W. Azobenzene/graphene hybrid for high-density solar thermal storage by optimizing molecular structure. Sci. China Technol. Sci.2016, 59, 1383–1390.

    CAS  Google Scholar 

  112. Luo, W.; Feng, Y.; Cao, C.; Li, M.; Liu, E.; Li, S.; Qin, C.; Hu, W.; Feng, W. A high energy density azobenzene/graphene hybrid: A nano-templated platform for solar thermal storage. J. Mater. Chem. A2015, 3, 11787–11795.

    CAS  Google Scholar 

  113. Chen, D.; Liu, H.; Kobayashi, T.; Yu, H. Multiresponsive reversible gels based on a carboxylic azo polymer. J. Mater. Chem.2010, 20, 3610–3614.

    CAS  Google Scholar 

  114. Ni, Y.; Li, X.; Hu, J.; Huang, S.; Yu, H. Supramolecular liquid-crystalline polymer organogel: Fabrication, multiresponsiveness, and holographic switching properties. Chem. Mater.2019, 31, 3388–3394.

    CAS  Google Scholar 

  115. Qin, L.; Gu, W.; Wei, J.; Yu, Y. Piecewise phototuning of self-organized helical superstructures. Adv. Mater.2018, 30, 1704941.

    Google Scholar 

  116. Feng, Y.; Liu, H.; Luo, W.; Liu, E.; Zhao, N.; Yoshino, K.; Feng, W. Covalent functionalization of graphene by azoben-zene with molecular hydrogen bonds for long-term solar thermal storage. Sci. Rep.2013, 3, 3260.

    PubMed  PubMed Central  Google Scholar 

  117. Dong, L.; Feng, Y.; Wang, L.; Feng, W. Azobenzene-based solar thermal fuels: Design, properties, and applications. Chem. Soc. Rev.2018, 47, 7339–7368.

    CAS  PubMed  Google Scholar 

  118. Han, G. G.; Li, H.; Grossman, J. C. Optically-controlled long-term storage and release of thermal energy in phase-change materials. Nat. Commun.2017, 8, 1446.

    PubMed  PubMed Central  Google Scholar 

  119. Kolpak, A. M.; Grossman, J. C. Azobenzene-functionalized carbon nanotubes as high-energy density solar thermal fuels. Nano Lett.2011, 11, 3156–3162.

    CAS  PubMed  Google Scholar 

  120. Kimizuka, N.; Yanai, N.; Morikawa, M. A. Photon upconversion and molecular solar energy storage by maximizing the potential of molecular self-assembly. Langmuir2016, 32, 12304–12322.

    CAS  PubMed  Google Scholar 

  121. Feng, W.; Li, S.; Li, M.; Qin, C.; Feng, Y. An energy-dense and thermal-stable bis-azobenzene/hybrid templated assembly for solar thermal fuel. J. Mater. Chem. A2016, 4, 8020–8028.

    CAS  Google Scholar 

  122. Saydjari, A. K.; Weis, P.; Wu, S. Spanning the solar spectrum: Azopolymer solar thermal fuels for simultaneous UV and visible light storage. Adv. Energy Mater.2017, 7, 1601622.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Funds for Distinguished Young Scholars (No. 51425306), the National Outstanding Youth Talent Program (2019), the State Key Program of National Natural Science Foundation of China (No. 51633007), the National Natural Science Foundation of China (Nos. 51573125, 51573147, and 51803151), and Scientific and Technological Commission of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, HT., Tang, JW., Feng, YY. et al. Structural Design and Application of Azo-based Supramolecular Polymer Systems. Chin J Polym Sci 37, 1183–1199 (2019). https://doi.org/10.1007/s10118-019-2331-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-019-2331-z

Keywords

Navigation