Skip to main content
Log in

Mediating the Migration of Mesenchymal Stem Cells by Dynamically Changing the Density of Cell-selective Peptides Immobilized on β-Cyclodextrin-modified Cell-resisting Polymer Brushes

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

A Correction to this article was published on 25 July 2020

This article has been updated

Abstract

Dynamic control of mesenchymal stem cell (MSC) behaviors on biomaterial surface is critically involved in regulating the cell fate and tissue regeneration. Herein, a stimuli-responsive surface based on host-guest interaction with cell selectivity was developed to regulate migration of MSCs in situ by dynamic display of cell-specific peptides. Azobenzene-grafted MSC-affinitive peptides (EPLQLKM, Azo-E7) were grafted to β-cyclodextran (β-CD)-modified poly(2-hydroxyethyl methacrylate)-b-poly(2-hydroxyethyl methacrylate-co-glycidyl methacrylate) (PHG) brushes, which were prepared by using surface-initiated atom transfer radical polymerization (SI-ATRP). X-ray photoelectron spectroscopy (XPS), quartz crystal microbalance (QCM), and water contact angle were used to characterize their structure and property. Cell adhesion assay showed that the combination effect of resisting property of PHG and MSC-affinity of E7 could promote the selective adhesion of MSCs over other types of cells such as RAW264.7 macrophages and NIH3T3 fibroblasts to some extent. UV-Vis spectroscopy proved that the competing guest molecules, amantadine hydrochloride (Ama), could release Azo-E7 peptides from the CD surface to different extents, and the effect was enhanced when UV irradiation was employed simultaneously. As a result, the decrease of cell adhesion density and migration rate could be achieved in situ. The cell density and migration rate could be reduced by over 40% by adding 20 μmol/L Ama, suggesting that this type of surface is a new platform for dynamic regulation of stem cell behaviors in situ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 25 July 2020

    The authors regret that Fig. 4(c) was misplaced by the first author originally. The corrected version of Fig. 4 is provided below. The quantitative analysis shown in Fig. 4(b) is not changed, and thus the conclusions related to Fig. 4 and reported in this article are not altered. Additional text corrections are not needed. The authors apologize for any inconvenience caused.

References

  1. Ermis, M.; Antmen, E.; Hasirci, V. Micro and nanofabrication methods to control cell-substrate interactions and cell behavior: A review from the tissue engineering perspective. Bioact. Mater.2018, 3, 355–369.

    PubMed  PubMed Central  Google Scholar 

  2. Byron, A.; Morgan, M. R.; Humphries, M. J. Adhesion signalling complexes. Curr. Biol.2010, 20, R1063–R1067.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Geiger, B.; Spatz, J. P.; Bershadsky, A. D. Environmental sensing through focal adhesions. Nat. Rev. Microbiol.2009, 10, 21–33.

    CAS  Google Scholar 

  4. Zamani, M.; Prabhakaran, M. P.; Thian, E. S.; Ramakrishna, S. Controlled delivery of stromal derived factor-1α from poly(lactic-co-glycolic acid) core-shell particles to recruit mesenchymal stem cells for cardiac regeneration. J. Colloid Interface Sci.2015, 451, 144–152.

    CAS  PubMed  Google Scholar 

  5. Yan, C.; Sun, J.; Ding, J. D. Critical areas of cell adhesion on micropatterned surfaces. Biomaterials2011, 32, 3931–3938.

    CAS  PubMed  Google Scholar 

  6. Okuyama, H.; Krishnamachary, B.; Zhou, Y. F.; Nagasawa, H.; Bosch-Marce, M.; Semenza, G. L. Expression of vascular endothelial growth factor receptor 1 in bone marrow-derived mesenchymal cells is dependent on hypoxia-inducible factor 1. J. Biol. Chem.2006, 281, 15554–15563.

    CAS  PubMed  Google Scholar 

  7. Wu, C. T.; Chang, J.; Zhai, W. Y.; Ni, S. Y.; Wang, J. Y. Porous akermanite scaffolds for bone tissue engineering: Preparation, characterization, and in vitro studies. J. Biomed. Mater. Res. B2006, 78B, 47–55.

    CAS  Google Scholar 

  8. Charras, G.; Sahai, E. Physical influences of the extracellular environment on cell migration. Nat. Rev. Microbiol.2014, 15, 813–824.

    CAS  Google Scholar 

  9. Chan, C. E.; Odde, D. J. Traction dynamics of filopodia on compliant substrates. Science2008, 322, 1687–1691.

    CAS  PubMed  Google Scholar 

  10. Shabbir, S. H.; Eisenberg, J. L.; Mrksich, M. An inhibitor of a cell adhesion receptor stimulates cell Migration. Angew. Chem. Int. Ed.2010, 49, 7706–7709.

    CAS  Google Scholar 

  11. Wu, J. D.; Mao, Z. W.; Gao, C. Y. Controlling the migration behaviors of vascular smooth muscle cells by methoxy poly(ethylene glycol) brushes of different molecular weight and density. Biomaterials2012, 33, 810–820.

    CAS  PubMed  Google Scholar 

  12. Biazar, E.; Khorasani, M. T.; Joupari, M. D. Cell adhesion and surface properties of polystyrene surfaces grafted with poly(N-isopropylacrylamide). Chinese J. Polym Sci.2013, 31, 1509–1518.

    CAS  Google Scholar 

  13. Cao, Z. Q.; Bian, Q.; Chen, Y.; Liang, F. X.; Wang, G. J. Light-responsive Janus-particle-based coatings for cell capture and release. ACS Macro Lett.2017, 6, 1124–1128.

    CAS  Google Scholar 

  14. Chen, Y. H.; Chang, S. H.; Wang, T. J.; Wang, I.; Young, T. H. Cell fractionation on pH-responsive chitosan surface. Biomaterials2013, 34, 854–863.

    CAS  PubMed  Google Scholar 

  15. Xiao, Y.; Zhou, H. Y.; Xuan, N. X.; Cheng, M.; Rao, Y. F.; Luo, Y.; Wang, B.; Tang, R. Effective and selective cell retention and recovery from whole blood by electroactive thin films. ACS Appl. Mater. Interfaces2014, 6, 20804–20811.

    CAS  PubMed  Google Scholar 

  16. Liu, H. Y.; Korc, M.; Lin, C. C. Biomimetic and enzyme-responsive dynamic hydrogels for studying cell-matrix interactions in pancreatic ductal adenocarcinoma. Biomaterials2018, 160, 24–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Costa, P.; Gautrot, J. E.; Connelly, J. T. Directing cell migration using micropatterned and dynamically adhesive polymer brushes. Acta Biomater.2014, 10, 2415–2422.

    CAS  PubMed  Google Scholar 

  18. Boekhoven, J.; Perez, C. M. R.; Sur, S.; Worthy, A.; Stupp, S. I. Dynamic display of bioactivity through host-guest chemistry. Angew. Chem. Int. Ed.2013, 52, 12077–12080.

    CAS  Google Scholar 

  19. Voskuhl, J.; Sankaran, S.; Jonkheijm, P. Optical control over bioactive ligands at supramolecular surfaces. Chem. Commun.2014, 50, 15144–15147.

    CAS  Google Scholar 

  20. Gong, Y. H.; Li, C.; Yang, J.; Wang, H. Y.; Zhuo, R. X.; Zhang, X. Z. Photoresponsive “smart template” via host-guest interaction for reversible cell adhesion. Macromolecules2011, 44, 7499–7502.

    CAS  Google Scholar 

  21. Deng, J.; Liu, X. Y.; Shi, W. B.; Cheng, C.; He, C.; Zhao, C. S. Light-triggered switching of reversible and alterable biofunctionality via β-cyclodextrin/azobenzene-based host-guest interaction. ACS Macro Lett.2014, 3, 1130–1133.

    CAS  Google Scholar 

  22. Bian, Q.; Wang, W.; Wang, S.; Wang, G. Light-triggered specific cancer cell release from cyclodextrin/azobenzene and aptamer-modified substrate. ACS Appl. Mater. Interfaces2016, 8, 27360–27367.

    CAS  PubMed  Google Scholar 

  23. Gu, L. Q.; Braha, O.; Conlan, S.; Cheley, S.; Bayley, H. Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter. Nature1999, 398, 686–690.

    CAS  PubMed  Google Scholar 

  24. Cheng, M. J.; Shi, F.; Li, J. S.; Lin, Z. F.; Jiang, C.; Xiao, M.; Zhang, L. Q.; Yang, W. T.; Nishi, T. Macroscopic supramolecular assembly of rigid building blocks through a flexible spacing coating. Adv. Mater.2014, 26, 3009–3013.

    CAS  PubMed  Google Scholar 

  25. Khan, M.; Yang, J.; Shi, C. C.; Lv, J.; Feng, Y. K.; Zhang, W. C. Surface tailoring for selective endothelialization and platelet inhibition via a combination of SI-ATRP and click chemistry using Cys-Ala-Gly-peptide. Acta Biomater.2015, 20, 69–81.

    CAS  PubMed  Google Scholar 

  26. Ren, T. C.; Yu, S.; Mao, Z. W.; Gao, C. Y. A complementary density gradient of zwitterionic polymer brushes and NCAM peptides for selectively controlling directional migration of schwann cells. Biomaterials2015, 56, 58–67.

    CAS  PubMed  Google Scholar 

  27. Ji, Y.; Wei, Y.; Liu, X. S.; Wang, J. L.; Ren, K. F.; Ji, J. Zwitterionic polycarboxybetaine coating functionalized with REDV peptide to improve selectivity for endothelial cells. J. Biomed. Mater. Res. A2012, 100A, 1387–1397.

    CAS  Google Scholar 

  28. Zheng, X. W.; Pan, X.; Pang, Q.; Shuai, C. A.; Ma, L.; Gao, C. Y. Selective capture of mesenchymal stem cells over fibroblasts and immune cells on E7-modified collagen substrates under flow circumstances. J. Mater. Chem. B2018, 6, 165–173.

    CAS  PubMed  Google Scholar 

  29. Man, Z. T.; Yin, L.; Shao, Z. X.; Zhang, X.; Hu, X. Q.; Zhu, J. X.; Dai, L. H.; Huang, H. J.; Yuan, L.; Zhou, C. Y. The effects of co-delivery of BMSC-affinity peptide and rhTGF-β1 from coaxial electrospun scaffolds on chondrogenic differentiation. Biomaterials2014, 35, 5250–5260.

    CAS  PubMed  Google Scholar 

  30. Shao, Z. X.; Zhang, X.; Pi, Y. B.; Wang, X. K.; Jia, Z. Q.; Zhu, J. X.; Dai, L. H.; Chen, W. Q.; Yin, L.; Chen, H. F. Polycaprolactone electrospun mesh conjugated with an MSC affinity peptide for MSC homing in vivo. Biomaterials2012, 33, 3375–3387.

    CAS  PubMed  Google Scholar 

  31. Yang, M.; Chu, L. Y.; Wang, H. D.; Xie, R.; Song, H.; Niu, C. H. A thermoresponsive membrane for chiral resolution. Adv. Funct. Mater.2008, 18, 652–663.

    Google Scholar 

  32. Tugulu, S.; Arnold, A.; Sielaff, I.; Johnsson, K.; Klok, H. A. Protein-functionalized polymer brushes. Biomacromolecules2005, 6, 1602–1607.

    CAS  Google Scholar 

  33. Ren, T. C.; Mao, Z. W.; Guo, J.; Gao, C. Y. Directional migration of vascular smooth muscle cells guided by a molecule weight gradient of poly(2-hydroxyethyl methacrylate) brushes. Langmuir2013, 29, 6386–6395.

    CAS  PubMed  Google Scholar 

  34. Ren, T. C.; Mao, Z. W.; Moya, S. E.; Gao, C. Y. Immobilization of enzymes on 2-hydroxyethyl methacrylate and glycidyl methacrylate copolymer brushes. Chem. Asian J.2014, 9, 2132–2139.

    CAS  PubMed  Google Scholar 

  35. Huang, S.; Xu, L. L.; Sun, Y. X.; Wu, T. Y.; Wang, K. X.; Li, G. An improved protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow. J. Orthop. Transl.2015, 3, 26–33.

    Google Scholar 

  36. Li, X.; Wang, M. M.; Wang, L.; Shi, X. J.; Xu, Y. J.; Song, B.; Chen, H. Block copolymer modified surfaces for conjugation of biomacromolecules with control of quantity and activity. Langmuir2013, 29, 1122–1128.

    CAS  PubMed  Google Scholar 

  37. Yan, S.; Wang, Z. N.; Gao, X. L.; Gao, C. J. Antifouling PVDF ultrafiltration membranes incorporating PVDF-g-PHEMA additive via atom transfer radical graft polymerizations. J. Membr. Sci.2012, 413-414, 38–47.

    Google Scholar 

  38. Zhu, L. J.; Zhu, L. P.; Jiang, J. H.; Yi, Z.; Zhao, Y. F.; Zhu, B. K.; Xu, Y. Y. Hydrophilic and anti-fouling polyethersulfone ultrafiltration membranes with poly(2-hydroxyethyl methacrylate) grafted silica nanoparticles as additive. J. Membr. Sci.2014, 451, 157–168.

    CAS  Google Scholar 

  39. Barbey, R.; Klok, H. Room temperature, aqueous postpolymerization modification of glycidyl methacrylate-containing polymer brushes prepared via surface-initiated atom transfer radical polymerization. Langmuir2010, 26, 18219–18230.

    CAS  PubMed  Google Scholar 

  40. Kim, M.; Lee, B.; Yang, K.; Park, J.; Jeon, S.; Um, S. H.; Kim, D.; Im, S. G.; Cho, S. BMP-2 peptide-functionalized nanopatterned substrates for enhanced osteogenic differentiation of human mesenchymal stem cells. Biomaterials2013, 34, 7236–7246.

    CAS  PubMed  Google Scholar 

  41. Zhou, W. F.; Yang, M.; Zhao, Z.; Li, S. P.; Cheng, Z. Q.; Zhu, J. S. Controlled hierarchical architecture in poly[oligo(ethylene glycol) methacrylate-b-glycidyl methacrylate] brushes for enhanced label-free biosensing. Appl. Surf. Sci.2018, 450, 236–243.

    CAS  Google Scholar 

  42. Hu, W. H.; Liu, Y. S.; Lu, Z. S.; Li, C. M. Poly[oligo(ethylene glycol) methacrylate-co-glycidyl methacrylate] brush substrate for sensitive surface plasmon resonance imaging protein arrays. Adv. Funct. Mater.2010, 20, 3497–3503.

    CAS  Google Scholar 

  43. Lei, Z.; Gao, J. X.; Liu, X.; Liu, D. J.; Wang, Z. X. Poly(glycidyl methacrylate-co-2-hydroxyethyl methacrylate) brushes as peptide/protein microarray substrate for improving protein binding and functionality. ACS Appl. Mater. Interfaces2016, 8, 10174–10182.

    CAS  PubMed  Google Scholar 

  44. Wu, S.; Du, W.; Duan, Y. Y.; Zhang, D. T.; Liu, Y. X.; Wu, B. B.; Zou, X. H.; Ouyang, H. W.; Gao, C. Y. Regulating the migration of smooth muscle cells by a vertically distributed poly(2-hydroxyethyl methacrylate) gradient on polymer brushes covalently immobilized with RGD peptides. Acta Biomater.2018, 75, 75–92.

    CAS  PubMed  Google Scholar 

  45. Dehghani, E. S.; Spencer, N. D.; Ramakrishna, S. N.; Benetti, E. M. Crosslinking polymer brushes with ethylene glycol-containing segments: Influence on physicochemical and antifouling properties. Langmuir2016, 32, 10317–10327.

    CAS  PubMed  Google Scholar 

  46. Mandal, J.; Varunprasaath, R. S.; Yan, W.; Divandari, M.; Spencer, N. D.; Dubner, M. In situ monitoring of SI-ATRP throughout multiple reinitiations under flow by means of a quartz crystal microbalance. RSC Adv.2018, 8, 20048–20055.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Fuhrmann, I.; Karger-Kocsis, J. Photoinitiated grafting of glycidyl methacrylate and methacrylic acid on ground tire rubber. J. Appl. Polym. Sci.2003, 89, 1622–1630.

    CAS  Google Scholar 

  48. Tabata, Y. Biomaterial technology for tissue engineering applications. J. R. Soc. Interface2009, 63, S311–S324.

    Google Scholar 

  49. Ren, T. C.; Ni, Y. L.; Du, W.; Yu, S.; Mao, Z.; Gao, C. Y. Dual responsive surfaces based on host-guest interaction for dynamic mediation of cell-substrate interaction and cell migration. Adv. Mater. Interfaces2017, 4, 1500865.

    Google Scholar 

  50. Lauffenburger, D. A.; Horwitz, A. F. Cell migration: A physically integrated molecular process. Cell1996, 84, 359–369.

    CAS  PubMed  Google Scholar 

  51. Dimilla, P. A.; Stone, J. A.; Quinn, J. A.; Albelda, S. M.; Lauffenburger, D. A. Maximal migration of human smooth muscle cells on fibronectin and type IV collagen occurs at an intermediate attachment strength. J. Cell Bio.1993, 122, 729–737.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Key Research and Development Program of China (No. 2016YFC1100403) and the National Natural Science Foundation of China (Nos. 21434006 and 51873188).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-You Gao.

Electronic Supplementary Information

10118_2019_2324_MOESM1_ESM.pdf

Mediating the Migration of Mesenchymal Stem Cells by Dynamically Changing the Density of Cell-selective Peptides Immobilized on β Cyclodextrin-modified Cell-resisting Polymer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, W., Zhang, DT., Wang, XM. et al. Mediating the Migration of Mesenchymal Stem Cells by Dynamically Changing the Density of Cell-selective Peptides Immobilized on β-Cyclodextrin-modified Cell-resisting Polymer Brushes. Chin J Polym Sci 38, 126–136 (2020). https://doi.org/10.1007/s10118-019-2324-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-019-2324-y

Keywords

Navigation