Skip to main content
Log in

Copolymerization of Azobenzene-bearing Monomer and 3,4-Ethylenedioxythiophene (EDOT): Improved Electrochemical Performance for Electrochromic Device Applications

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

In this study, novel electrochromic copolymers of 3,4-ethylenedioxythiophene (EDOT) and (E)-1,2-bis(2-fluoro-4-(4-hexylthiophen-2- yl)phenyl)diazene (M1) with different monomer feed ratios were designed and synthesized electrochemically. Electrochemical and spectroelectrochemical characterizations were performed using voltammetry and UV-Vis-NIR spectrophotometry techniques to test the applicability of copolymers for electrochromic applications. In terms of electrochemical behaviors, addition of an electron-rich EDOT unit into the azobenzenecontaining copolymer increased the electron density on the polymer chain and afforded copolymers with very low oxidation potentials at around 0.30 V. While the homopolymers (P1 and PEDOT) exhibited neutral state absorptions centered at 510 and 583 nm, EDOT-bearing copolymers showed red shifted absorptions compared to those of P1 with narrower optical band gaps. In addition, the poor optical contrast and switching times of azobenzene-bearing homopolymer were significantly improved with EDOT addition into the copolymer chain. As a result of the promising electrochromic and kinetic preperties, CoP1.5-bearing single layer electrochromic device that works between purple and light greenish blue colors was constructed and characterized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cheng, X.; Fu, Y.; Zhao, J.; Zhang, Y. Polyaniline with high crystallinity degree: Synthesis, structure, and electrochemical properties. J. Appl. Polym. Sci. 2014, 131, 39770–39777.

    Google Scholar 

  2. Cansu-Ergun, E. G. Covering the more visible region by electrochemical copolymerization of carbazole and benzothiadiazole based donor-acceptor type monomers. Chinese J. Polym. Sci. 2019, 37, 28–35.

    Article  CAS  Google Scholar 

  3. Guo, B.; Li, W.; Guo, X.; Meng, X.; Ma, W.; Zhang, M.; Li, Y. High efficiency nonfullerene polymer solar cells with thick active layer and large area. Adv. Mater. 2017, 29, 1702291–1702297.

    Article  Google Scholar 

  4. Azeri, O.; Aktas, E.; Istanbulluoglu, C.; Hacioglu, S. O.; Cevher, S. C.; Toppare, L.; Cirpan, A. Efficient benzodithiophene and thienopyrroledione containing random polymers as components for organic solar cells. Polymer2017, 133, 60–67.

    Article  CAS  Google Scholar 

  5. Kamtekar, K. J.; Vaughan, H. L.; Lyons, B. P.; Monkman, A. P.; Pandya, S. U.; Bryce, M. R. Synthesis and spectroscopy of poly(9,9-dioctylfluorene-2,7-diyl-co-2,8-dihexyldibenzothiophene-S,Sdioxide-3,7-diyl)s: Solution-processable, deep-blue emitters with a high triplet energy. Macromolecules, 2010, 43, 4481–4488.

    Article  CAS  Google Scholar 

  6. Lee, K.; Povlich, L. K.; Kim, J. Recent advances in fluorescent and colorimetric conjugated polymer-based biosensors. Analyst2010, 135, 2179–2189.

    Article  CAS  Google Scholar 

  7. Soylemez, S.; Hacioglu, S. O.; Kesik, M.; Unay, H.; Cirpan, A.; Toppare, L. A novel and effective surface design: Conducting polymer/β-cyclodextrin host-guest system for cholesterol biosensor. ACS Appl. Mater. Interfaces2014, 6, 18290–18300.

    Article  CAS  Google Scholar 

  8. Thompson, B. C.; Schottland, P.; Zong, K.; Reynolds, J. R. In situ colorimetric analysis of electrochromic polymers and devices. Chem. Mater.2000, 12, 1563–1571.

    Article  CAS  Google Scholar 

  9. Sapp, S. A.; Sotzing, G. A.; Reynolds, J. R. High contrast ratio and fast-switching dual polymer electrochromic devices. Chem. Mater.1998, 10, 2101–2108.

    Article  CAS  Google Scholar 

  10. Yoo, S. J.; Cho, J. H.; Lim, J. W.; Park, S. H.; Jang, J.; Sung, Y. E. High contrast ratio and fast switching polymeric electrochromic films based on water-dispersible polyaniline-poly(4-styrenesulfonate) nanoparticles. Electrochem. Commun.2010, 12, 164–167.

    Article  CAS  Google Scholar 

  11. Sonmez, G.; Sonmez, H. B.; Shen, C. K. F.; Jost, R. W.; Rubin, Y.; Wudl, F. A processable green polymeric electrochromic. Macromolecules2005, 38, 669–675.

    Article  CAS  Google Scholar 

  12. Roncali, J. Molecular engineering of the band gap of π-conjugated systems: Facing technological applications. Macromol. Rapid Commun.2007, 28, 1761–1775.

    Article  CAS  Google Scholar 

  13. Gunbas, G.; Toppare, L. Green as it gets; Donor-acceptor type polymers as the key to realization of RGB based polymer display devices. Macromol. Symp.2010, 297, 79–86.

    Article  CAS  Google Scholar 

  14. Nie, G.; Qu, L.; Xu, J. Electrosyntheses and characterizations of a new soluble conducting copolymer of 5-cyanoindole and 3,4-ethylenedioxythiophene. Electrochim. Acta2008, 53, 8351–8358.

    Article  CAS  Google Scholar 

  15. Han, R.; Lu, S.; Wang, Y.; Zhang, X.; Wu, Q.; He, T. Influence of monomer concentration during polymerization on performance and catalytic mechanism of resultant poly(3,4-ethylenedioxythiophene) counter electrodes for dye-sensitized solar cells. Electrochim. Acta2015, 173, 796–803.

    Article  CAS  Google Scholar 

  16. Wang, Z.; Xu, J.; Lu, B.; Zhang, S.; Qin, L.; Mo, D.; Zhen, S. Poly(thieno[3,4-b]-1,4-oxathiane): Medium effect on electropolymerization and electrochromic performance. Langmuir2014, 30, 15581–15589.

    Article  CAS  Google Scholar 

  17. Liu, X.; Hu, Y.; Shen, L.; Zhang, G.; Cao, T.; Xu, J.; Zhao, F.; Hou, J.; Liu, H.; Jiang, F. Novel copolymers based on PEO bridged thiophenes and 3,4-ethylenedioxythiophene: Electrochemical, optical, and electrochromic properties. Electrochim. Acta2018, 288, 52–60.

    Article  CAS  Google Scholar 

  18. Hu, Y.; Jiang, F.; Lu, B.; Liu, C.; Hou, J.; Xu, J. Free-standing oligo(oxyethylene)-functionalized polythiophene withthe 3,4-ethylenedioxythiophene building block: Electrosynthesis, electrochromic and thermoelectric properties. Electrochim. Acta2017, 228, 361–370.

    Article  CAS  Google Scholar 

  19. Hu, Y.; Wang, Z.; Lin, K.; Xu, J.; Duan, X.; Zhao, F.; Hou, J.; Jiang, F. Electrosynthesis and electrochromic properties of free-standing copolymer based on oligo(oxyethylene) cross-linked 2,2′-bithiophene and 3,4-ethylenedioxythiophene. J. Polym. Sci., Part A: Polym. Chem.2016, 54, 1583–1592.

    Article  CAS  Google Scholar 

  20. He, L.; Freeman, H. S.; Nakpathom, M.; Boyle, P. D. Synthesis and X-ray analysis of a perfluoroalkyl-substituted azobenzene dye. Dyes Pigments2015, 120, 245–250.

    Article  CAS  Google Scholar 

  21. Gong, C. B.; He, L. H.; Long, J. F.; Liu, L. T.; Liu, S.; Tang, Q.; Fu, X. K. Synthesis and characterisation of azobenzene-bridged cationiccationic and neutral-cationic electrochromic materials. Synthetic Met.2016, 220, 147–154.

    Article  CAS  Google Scholar 

  22. Ferreira, J.; Santos, M. J. L.; Matos, R.; Ferreira, O. P.; Rubira, A. F.; Girotto, E. M. Structural and electrochromic study of polypyrrole synthesized with azo and anthraquinone dyes. J. Electroanal. Chem.2006, 591, 27–32.

    Article  CAS  Google Scholar 

  23. Pei, X.; Fernandes, A.; Mathy, B.; Laloyaux, X.; Nysten, B.; Riant, O.; Jonas, A. M. Correlation between the structure and wettability of photoswitchable hydrophilic azobenzene monolayers on silicon. Langmuir2011, 27, 9403–9412.

    Article  CAS  Google Scholar 

  24. Apaydin, D. H.; Akpinar, H.; Sendur, M.; Toppare, L. Electrochromism in multichromic conjugated polymers: Thiophene and azobenzene derivatives on the main chain. J. Electroanal. Chem.2012, 665, 52–57.

    Article  CAS  Google Scholar 

  25. Yigit, D.; Udum, Y. A.; Güllü, M.; Toppare, L. Electrochemical and optical properties of novel terthienyl based azobenzene, coumarine and fluorescein containing polymers: Multicolored electrochromic polymers. J. Electroanal. Chem.2014, 712, 215–222.

    Article  CAS  Google Scholar 

  26. Yagmur, I.; Ak, M.; Bayrakceken, A. Fabricating multicolored electrochromic devices using conducting copolymers. Smart Mater. Struct.2013, 22, 115022–115030.

    Article  Google Scholar 

  27. Soganci, T.; Kurtay, G.; Ak, M.; Güllü, M. Preparation of an EDOT-based polymer: Optoelectronic properties and electrochromic device application. RSC Adv.2014, 5, 2630–2639.

    Article  Google Scholar 

  28. De Paoli, M. A.; Gazotti, W. A. Electrochemistry, polymers and opto-electronic devices: A combination with a future. J. Braz. Chem. Soc.2002, 13, 410–424.

    Article  CAS  Google Scholar 

  29. Camurlu P.; Gultekin, C. A comprehensive study on utilization of N-substituted poly(2,5-dithienylpyrrole) derivatives in electrochromic devices. Sol. Energy Mater. Sol. Cells2012, 107, 142–147.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I would like to thank and appreciate Prof. Dr. Levent Toppare (Department of Chemistry, Middle East Technical University, Turkey) for his guidance and support for my academic carrier.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serife O. Hacioglu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hacioglu, S.O. Copolymerization of Azobenzene-bearing Monomer and 3,4-Ethylenedioxythiophene (EDOT): Improved Electrochemical Performance for Electrochromic Device Applications. Chin J Polym Sci 38, 109–117 (2020). https://doi.org/10.1007/s10118-019-2306-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-019-2306-0

Keywords

Navigation