Skip to main content
Log in

Synthesis of Cerium-containing Polymethylphenyl Silicone and Its Antioxidant Effect on Fluorosilicone Rubber

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

As an essential elastomer used in edge technologies, fluorosilicone rubber (FSR) suffers serious oxidative ageing problem when serving at high temperature. Cerium oxide is generally used as an antioxidant additive but remains unsatisfactory. In order to obtain better antioxidant effect on improving the thermal stability of FSR, a kind of cerium-containing polymethylphenyl silicone (PSI-Ce) was synthesized and the structure was verified by Fourier-transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance (1H-NMR). Due to the homogeneous dispersion on molecular scale, PSI-Ce imposed much better antioxidant effect than the commercial CeO2 did, no matter from isothermal degradation at 320 °C or thermal-oxidative ageing test at 230 °C. In particular, after ageing for 72 h, FSR/PSI-Ce (2 phr) maintained 82% of tensile strength and 63% of elongation at break, in comparison to the corresponding values of 48% and 42% for FSR/CeO2 (2 phr). Moreover, 2 phr PSI-Ce was equivalent to 0.046 phr CeO2 according to cerium element conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, X. K.; Poojari, Y.; Drechsler, L. E.; Kuo, C. M.; Fried, J. R.; Clarson, S. J. Pervaporation of organic liquids from binary aqueous mixtures using poly(trifluoropropylmethylsiloxane) and poly(dimethylsiloxane) dense membranes. J. Inorg. Organomet. Polym. Mater. 2007, 18, 246–252.

    Article  CAS  Google Scholar 

  2. Esmizadeh, E.; Naderi, G.; Barmar, M. Effect of organo-clay on properties and mechanical behavior of fluorosilicone rubber. Fibers Polym. 2014, 15, 2376–2385.

    Article  CAS  Google Scholar 

  3. Cypryk, M.; Delczyk, B.; Juhari, A.; Koynov, K. Controlled synthesis of trifluoropropylmethylsiloxane-dimethylsiloxane gradient copolymers by anionic ROP of cyclotrisiloxanes. J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 1204–1216.

    Article  CAS  Google Scholar 

  4. Gao, Y.; Jiang, W.; Guan, Y.; Yang, P.; Zheng, A. N. A novel approach for anionic bulk polymerization of 1,3,5-tris(trifluoropropylmethyl)cyclotrisiloxane. Polym. Eng. Sci. 2010, 50, 2440–2447.

    Article  CAS  Google Scholar 

  5. Liu, Y.; Liu, H.; Zhang, R.; Zhou, C.; Feng, S. Preparation and properties of heat curable blended methylfluorosilicone rubber. Polym. Eng. Sci. 2013, 53, 52–58.

    Article  CAS  Google Scholar 

  6. Kahlig, H.; Zollner, P.; Mayer-Helm, B. X. Characterization of degradation products of poly[(3,3,3-trifluoropropyl)methylsiloxane] by nuclear magnetic resonance spectroscopy, mass spectrometry and gas chromatography. Polym. Degrad. Stab. 2009, 94, 1254–1260.

    Article  CAS  Google Scholar 

  7. Xu, X.; Xu, Z.; Chen, P.; Zhou, X.; Zheng, A. N; Guan, Y. Preparation of fluorosilicone random copolymers with properties superior to those of fluorosilicone/silicone polymer blends. J. Inorg. Organomet. Polym. Mater. 2015, 25, 1267–1276.

    Article  CAS  Google Scholar 

  8. Dai, Y.; Ruan, X.; Bai, F.; Yu, M.; Li, H.; Zhao, Z.; He, G. High solvent resistance PTFPMS/PEI hollow fiber composite membrane for gas separation. Appl. Surf. Sci. 2016, 360, 164–173.

    Article  CAS  Google Scholar 

  9. Bhuvaneswari, C. M.; Dhanasekaran, R.; Chakravarthy, S. K. R.; Kale, S. S.; Gouda, G. Evaluation of fluorosicone-silicone elastomer blend for aeronautical fuel system. Prog. Rubber. Plast. Recycl. Technol. 2015, 31, 207–218.

    Article  Google Scholar 

  10. Smitha Alex, A.; Rajeev, R. S.; Krishnaraj, K.; Sreenivas, N.; Manu, S. K.; Gouri, C.; Sekkar, V. Thermal protection characteristics of polydimethylsiloxane-organoclay nanocomposite. Polym. Degrad. Stab. 2017, 144, 281–291.

    Article  CAS  Google Scholar 

  11. Camino, G.; Lomakin, S. M.; Lazzari, M. Polydimethylsiloxane thermal degradation. Part 1. Kinetic aspects. Polymer 2001, 42, 2395–2402.

    Article  CAS  Google Scholar 

  12. Camino, G.; Lomakin, S. M.; Lagerad, M. Thermal polydimethylsiloxane degradation. Part 2. The degradation mechanisms. Polymer 2002, 43, 2011–2015.

    Article  CAS  Google Scholar 

  13. Patel, M.; Skinner, A. R. Thermal ageing studies on room-temperture vulcanised polysiloxane rubbers. Polym. Degrad. Stab. 2001, 73, 399–402.

    Article  CAS  Google Scholar 

  14. Jovanovic, J. D.; Govedarica, M. N.; Dvornic, P. R.; Popovic, I. G. The thermogravimetric analysis of some polysiloxanes. Polym. Degrad. Stab. 1998, 61, 87–93.

    Article  CAS  Google Scholar 

  15. Zhang, S.; Wang, H. Thermal degradation of amino-group-modified polydimethylsiloxane. J. Therm. Anal. Calorim. 2010, 103, 711–716.

    Article  CAS  Google Scholar 

  16. Lewicki, J. P.; Liggat, J. J.; Patel, M. The thermal degradation behaviour of polydimethylsiloxane/montmorillonite nanocomposites. Polym. Degrad. Stab. 2009, 94, 1548–1557.

    Article  CAS  Google Scholar 

  17. Liu, Y. R.; Huang, Y. D.; Liu, L. Thermal stability of POSS/methylsilicone nanocomposites. Compos. Sci. Technol. 2007, 67, 2864–2876.

    Article  CAS  Google Scholar 

  18. Zheng, A. N.; Huang, Y.; You, Y.; Hu, J.; Wei, D.; Xu, X.; Guan, Y. Boron particles acting as antioxidants for fluorosilicone rubber due to their radical scavenging activity. Polym. Degrad. Stab. 2018, 158, 168–175.

    Article  CAS  Google Scholar 

  19. Guan, Y.; Yang, R.; Huang, Y.; Yu, C.; Li, X.; Wei, D.; Xu, X. Multi-walled carbon nanotubes acting as antioxidant for fluorosilicone rubber. Polym. Degrad. Stab. 2018, 156, 161–169.

    Article  CAS  Google Scholar 

  20. Xu, X.; Liu, J.; Chen, P.; Wei, D.; Guan, Y.; Lu, X.; Xiao, H. The effect of ceria nanoparticles on improving heat resistant properties of fluorosilicone rubber. J. Appl. Polym. Sci. 2016, 133, 44117.

    Google Scholar 

  21. Paul, D. R.; Mark, J. E. Fillers for polysiloxane (“silicone”) elastomers. Prog. Polym. Sci. 2010, 35, 893–901.

    Article  CAS  Google Scholar 

  22. Li, H.; Tao, S.; Huang, Y.; Su, Z.; Zheng, J. The improved thermal oxidative stability of silicone rubber by using iron oxide and carbon nanotubes as thermal resistant additives. Compos. Sci. Technol. 2013, 76, 52–60.

    Article  CAS  Google Scholar 

  23. Zhang, X.; Zhang, Q.; Zheng, J. Effect and mechanism of iron oxide modified carbon nanotubes on thermal oxidative stability of silicone rubber. Compos. Sci. Technol. 2014, 99, 1–7.

    Article  CAS  Google Scholar 

  24. Shentu, B. Q.; Gan, T. F.; Weng, Z. X. Modification of Fe2O3 and its effect on the heat-resistance of silicone rubber. J. Appl. Polym. Sci. 2009, 113, 3202–3206.

    Article  CAS  Google Scholar 

  25. Gan, T. F.; Shentu, B. Q.; Weng, Z. X. Modification of CeO2 and its effect on the heat-resistance of silicone rubber. Chinese J. Polym. Sci. 2008, 26, 489–494.

    Article  CAS  Google Scholar 

  26. Botter, W.; Ferreira Soares, R.; Galembeck, F. Interfacial reactions and self-adhesion of polydimethylsiloxanes. J. Adhes. Sci. Technol. 1992, 6, 791–805.

    Article  CAS  Google Scholar 

  27. Sim, L. C.; Ramanan, S. R.; Ismail, H.; Seetharamu, K. N.; Goh, T. J. Thermal characterization of Al2O3 and ZnO reinforced silicone rubber as thermal pads for heat dissipation purposes. Thermochim. Acta 2005, 430, 155–165.

    Article  CAS  Google Scholar 

  28. Yao, Y. Y.; Lu, G. Q.; Boroyevich, D. S.; Ngo, K. D. T. Effect of Al2O3 fibers on the high-temperature stability of silicone elastomer. Polymer 2014, 55, 4232–4240.

    Article  CAS  Google Scholar 

  29. Nielsen, J. M. Oxidative stabilization of dimethyl silicone fluids with iron between 70 and 370 °C. J. Polym. Sci., Polym. Symp. 1973, 40, 189–197.

    Article  Google Scholar 

  30. Baker, H. R.; Singleterry, C. R. Stabilization of silicone lubricating fluids above 200 °C by iron, copper, cerium, and other metal compounds. J. Chem. Eng. Data 1961, 6, 146–154.

    Article  CAS  Google Scholar 

  31. Han, W. Q.; Wu, L. J.; Zhu, Y. M. Formation and oxidation state of CeO2- X nanotubes. J. Am. Chem. Soc. 2005, 127, 12814–12815.

    Article  CAS  PubMed  Google Scholar 

  32. Belyavskii, S. G.; Mingalyov, P. G.; Giulieri, F.; Combarrieau, R.; Lisichkin, G. V. Chemical modification of the surface of a carbonyl iron powder. Prot. Met. 2006, 42, 244–252.

    Article  CAS  Google Scholar 

  33. Ikaev, A. M.; Mingalyov, P. G.; Lisichkin, G. V. Chemical modification of iron oxide surface with organosilicon and organophosphorous compounds. Colloid J. 2007, 69, 741–746.

    Article  CAS  Google Scholar 

  34. Pu, H. T.; Jiang, F. J.; Yang, Z. L. Studies on preparation and chemical stability of reduced iron particles encapsulated with polysiloxane nano-films. Mater. Lett. 2006, 60, 94–97.

    Article  CAS  Google Scholar 

  35. Huang, R. H.; Wang, L.; Lin, Y.; Dong, Y.; You, D. Surface modification of carbonyl iron powders with silicone polymers in supercritical fluid to get higher dispersibility and higher thermal stability. Surf. Interface Anal. 2017, 49, 79–84.

    Article  CAS  Google Scholar 

  36. Li, Y. M.; Zheng, Z. M.; Xu, C. L.; Ren, C.; Zhang, Z.; Xie, Z. Synthesis of iron-containing polysilazane and its antioxidation effect on silicone oil and rubber. J. Appl. Polym. Sci. 2003, 90, 306–309.

    Article  CAS  Google Scholar 

  37. Cai, D.; Neyer, A.; Kuckuk, R.; Heise, H. M. Raman, mid-infrared, near-infrared and ultraviolet-visible spectroscopy of PDMS silicone rubber for characterization of polymer optical waveguide materials. J. Mol. Struct. 2010, 976, 274–281.

    Article  CAS  Google Scholar 

  38. Colthup, N. B.; Daly, L. H.; Wiberley, S. E. Introduction to infrared and Raman spectroscopy. Academic Press, San Diego, 1990, p. 355.

    Book  Google Scholar 

  39. Sopicka-Lizer, M.; Michalik, D.; Plewa, J.; Juestel, T.; Winkler, H.; Pawlik, T. The effect of Al-O substitution for Si-N on the luminescence properties of YAG:Ce phosphor. J. Eur. Ceram. Soc. 2012, 32, 1383–1387.

    Article  CAS  Google Scholar 

  40. Selvaraj, M.; Kim, B. H.; Lee, T. G. FTIR studies on selected mesoporous metallosilicate molecular sieves. Chem. Lett. 2005, 34, 1290–1291.

    Article  CAS  Google Scholar 

  41. Lin, S. L.; Hwang, C. S.; Lee, J. F. Characterization of CeO2-Al2O3-SiO2 glasses by infrared and X-ray absorption near edge structure spectroscopies. J. Mater. Res. 1996, 11, 2641–2650.

    Article  CAS  Google Scholar 

  42. Park, S. H.; Kim, B. H.; Selvaraj, M.; Lee, T. G. Synthesis and characterization of mesoporous Ce-Mn-MCM-41 molecular sieves. J. Ind. Eng. Chem. 2007, 13, 637–643.

    CAS  Google Scholar 

  43. Laha, S. C.; Mukherjee, P.; Sainkar, S. R.; Kumar, R. Cerium containing MCM-41-Type mesoporous materials and their acidic and redox catalytic properties. J. Catal. 2002, 207, 213–223.

    Article  CAS  Google Scholar 

  44. Radhakrishnan, T. S. New method for evaluation of kinetic parameters and mechanism of degradation from pyrolysis-GC studies: Thermal degradation of polydimethylsiloxanes. J. Appl. Polym. Sci. 1999, 73, 441–450.

    Article  CAS  Google Scholar 

  45. Korsvik, C.; Patil, S.; Seal, S.; Self, W. T. Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem. Commun. 2007, 1056–1058.

  46. Tarnuzzer, R. W.; Colon, J.; Patil, S.; Seal, S. Vacancy engineered ceria nanostructures for protection from nanostructures for protection from radiation-induced cellular damage. Nano Lett. 2005, 5, 2573.

    Article  CAS  PubMed  Google Scholar 

  47. Xue, Y.; Luan, Q. F.; Yang, D.; Yao, X.; Zhou, K. B. Direct evidence for hydroxyl radical scavenging activity of cerium oxide nanoparticles. J. Phys. Chem. C 2011, 115, 4433–4438.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51573043 and 21805086) and the Fundamental Research Funds for the Central Universities (Nos. 222201817001 and 222201814004). This research was supported by the Shanghai Leading Academic Discipline Project (No. B502) and the Shanghai Key Laboratory Project (No. ZD20170203). Support from FSIR Advanced Material Co., Ltd. was also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, Y., Hu, J., Huang, YK. et al. Synthesis of Cerium-containing Polymethylphenyl Silicone and Its Antioxidant Effect on Fluorosilicone Rubber. Chin J Polym Sci 37, 783–789 (2019). https://doi.org/10.1007/s10118-019-2266-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-019-2266-4

Keywords

Navigation