Skip to main content
Log in

Effects of Main-chain and Chain-ends on the Organogelation of Stearoyl Appended Pendant Valine Based Polymers

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

In this work, we investigated the effect of hydrophobic interactions between the polymeric backbone and chain-end groups on the self-assembly pathway of stearoyl appended side-chain valine (Val)-based poly(methacrylate/acrylate) homopolymers in different organic hydrocarbons. Gelation studies conducted revealed that while polymers with polyacrylate as backbone induces gelation in several organic hydrocarbons, polymers with polymethacrylate in the main-chain significantly hinders macroscopic gelation. Morphology of the organogels was analysed by field emission scanning electron microscopy (FESEM), and mechanical strengths of the organogels were determined by rheological measurements. Reversible addition-fragmentation chain transfer (RAFT) polymerization chain transfer agents (CTA)s, [R1-S-C=(S)-S-R2] with different -R1 and -R2 groups, have been employed to study the effect of structural variation at the chain-end on macroscopic assembly mechanism. We found that the additional interactions between terminal groups via hydrogen-bonding or π-π stacking interactions or both help to build up the self-assembly pathway and thereby produces mechanically stable organogels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Holder, S. J.; Sommerdijk, N. A. J. M. New micellar morphologies from amphiphilic block copolymers: Disks, toroids and bicontinuous micelles. Polym. Chem. 2011, 2, 1018–1028.

    Article  CAS  Google Scholar 

  2. Dong, H.; Paramonov, S. E.; Aulisa, L.; Bakota, E. L.; Hartgerink, J. D. Self-assembly of multidomain peptides: Balancing molecular frustration controls conformation and nanostructures. J. Am. Chem. Soc. 2007, 129, 12468–12472.

    Article  CAS  PubMed  Google Scholar 

  3. Pati, D.; Kalva, N.; Das, S.; Kumaraswamy, G.; Sen Gupta, S.; Ambade, A. V. Multiple topologies from glycopolypeptidedendron conjugate self-assembly: Nanorods, micelles, and organogels. J. Am. Chem. Soc. 2012, 134, 7796–7802.

    Article  CAS  PubMed  Google Scholar 

  4. Du, J.; O’Reilly, R. K. Advances and challenges in smart and functional polymer vesicles. Soft Matter 2009, 5, 3544–3561.

    Article  CAS  Google Scholar 

  5. Tamesue, S.; Takashima, Y.; Yamaguchi, H.; Shinkai, S.; Harada, A. Photoswitchable supramolecular hydrogels formed by cyclodextrins and azobenzene polymers. Angew. Chem. Int. Ed. 2010, 49, 7461–7464.

    Article  CAS  Google Scholar 

  6. Ajayaghosh, A.; Praveen, V. K. π-Organogels of self-assembled p-phenylenevinylenes: Soft materials with distinct size, shape, and functions. Acc. Chem. Res. 2007, 40, 644–656.

    Article  CAS  PubMed  Google Scholar 

  7. Haldar, U.; Nandi, M.; Maiti, B.; De, P. POSS-induced enhancement of mechanical strength in RAFT-made thermoresponsive hydrogels. Polym. Chem. 2015, 6, 5077–5085.

    Article  CAS  Google Scholar 

  8. Peppas, N. A.; Huang, Y.; Torres-Lugo, M.; Ward, J. H.; Zhang, J. Physicochemical foundations and structural designs of hydrogels in medicine and biology. Annu. Rev. Biomed. Eng. 2000, 2, 9–29.

    Article  CAS  PubMed  Google Scholar 

  9. Deng, G.; Li, F.; Yu, H.; Liu, F.; Liu, C.; Sun, W.; Jiang, H.; Chen, Y. Dynamic hydrogels with an environmental adaptive self-healing ability and dual responsive sol-gel transitions. ACS Macro Lett. 2012, 1, 275–279.

    Article  CAS  Google Scholar 

  10. Campanella, A.; Döhler, D.; Binder, W. H. Self-healing in supramolecular polymers. Macromol. Rapid Commun. 2018, 39, 1700739.

    Article  CAS  Google Scholar 

  11. Koutsopoulos, S.; Unsworth, L. D.; Nagai, Y.; Zhang, S. Controlled release of functional proteins through designer self-assembling peptide nanofiber hydrogel scaffold. Proc. Natl. Acad. Sci. 2009, 106, 4623–4628.

    Article  PubMed  Google Scholar 

  12. Altunbas, A.; Lee, S. J.; Rajasekaran, S. A.; Schneider, J. P.; Pochan, D. J. Encapsulation of curcumin in self-assembling peptide hydrogels as injectable drug delivery vehicles. Biomaterials 2011, 32, 5906–5914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kisiday, J.; Jin, M.; Kurz, B.; Hung, H.; Semino, C.; Zhang, S.; Grodzinsky, A. J. Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: implications for cartilage tissue repair. Proc. Natl. Acad. Sci. 2002, 99, 9996–10001.

    Article  CAS  PubMed  Google Scholar 

  14. Hartgerink, J. D.; Beniash, E.; Stupp, S. I. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 2001, 294, 1684–1688.

    Article  CAS  PubMed  Google Scholar 

  15. Shao, H.; Wang, C. F.; Zhang, J.; Chen, S. Fabrication of reversible phase transition polymer gels toward metal ion sensing. Macromolecules 2014, 47, 1875–1881.

    Article  CAS  Google Scholar 

  16. Shi, D.; Liu, R.; Dong, W.; Li, X.; Zhang, H.; Chen, M.; Akashi, M. pH-dependent and self-healing properties of mussel modified poly(vinyl alcohol) hydrogels in a metal-free environment. RSC Adv. 2015, 5, 82252–82258.

    Article  CAS  Google Scholar 

  17. Yu, X.; Chen, L.; Zhang, M.; Yi, T. Low-molecular-mass gels responding to ultrasound and mechanical stress: Towards self-healing materials. Chem. Soc. Rev. 2014, 43, 5346–5371.

    Article  CAS  PubMed  Google Scholar 

  18. Segarra-Maset, M. D.; Nebot, V. J.; Miravet, J. F.; Escuder, B. Control of molecular gelation by chemical stimuli. Chem. Soc. Rev. 2013, 42, 7086–7098.

    Article  CAS  PubMed  Google Scholar 

  19. Yan, X.; Wang, F.; Zheng, B.; Huang, F. Stimuli-responsive supramolecular polymeric materials. Chem. Soc. Rev. 2012, 41, 6042–6065.

    Article  CAS  PubMed  Google Scholar 

  20. Appel, E. A.; del Barrio, J.; Loh, X. J.; Scherman, O. A. Supramolecular polymeric hydrogels. Chem. Soc. Rev. 2012, 41, 6195–6214.

    Article  CAS  PubMed  Google Scholar 

  21. Okesola, B. O.; Smith, D. K. Applying low-molecular weight supramolecular gelators in an environmental setting-self-assembled gels as smart materials for pollutant removal. Chem. Soc. Rev. 2016, 45, 4226–4251.

    Article  CAS  PubMed  Google Scholar 

  22. Suzuki, M.; Yanagida, R.; Setoguchi, C.; Shirai, H.; Hanabusa, K. New polymer organogelators with L-isoleucine and L-valine as a gelation-causing segment: Organogelation by a combination of supramolecular polymer and conventional polymer. J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 353–361.

    Article  CAS  Google Scholar 

  23. Suzuki, M.; Setoguchi, C.; Shirai, H.; Hanabusa, K. Organogelation by polymer organogelators with a L-lysine derivative: formation of a three-dimensional network consisting of supramolecular and conventional polymers. Chem. Eur. J. 2007, 13, 8193–8200.

    Article  CAS  PubMed  Google Scholar 

  24. Carretti, E.; Dei, L.; Baglioni, P.; Weiss. R. G. Synthesis and characterization of gels from polyallylamine and carbon dioxide as gellant. J. Am. Chem. Soc. 2003, 125, 5121–5129.

    Article  CAS  PubMed  Google Scholar 

  25. Niyomsin, S.; Chirachanchai, S. Poly(acrylic acid) with benzoxazine-based supramolecular crosslinker for responsive and reversible functional hydrogel. Eur. Polym. J. 2088, 155, 451–458.

    Google Scholar 

  26. Kumar, R. J.; MacDonald, J. M.; Singh, T. B.; Waddington, L. J.; Holmes, A. B. Hierarchical self-assembly of semiconductor functionalized peptide α-helices and optoelectronic properties. J. Am. Chem. Soc. 2011, 133, 8564–8573.

    Article  CAS  PubMed  Google Scholar 

  27. Saiani, A.; Guenet, J. M. On the helical form in syndiotactic poly(methyl methacrylate) thermoreversible gels as revealed by small-angle neutron scattering. Macromolecules 9977, 10, 966–972.

    Google Scholar 

  28. Chen, L.; Yuan, Y.; Zhong, G.; Li, J.; Zhang, H. Novel application of a classical side-chain liquid crystalline polymer as a gelator for common solvents. Polymer 2017, 132, 51–58.

    Article  CAS  Google Scholar 

  29. Madsen, J.; Armes, S. P. (Meth)acrylic stimulus-responsive block copolymer hydrogels. Soft Matter 2012, 8, 592–605.

    Article  CAS  Google Scholar 

  30. Nguyen-Misra, M.; Mattice, W. L. Micellization and gelation of symmetric triblock copolymers with insoluble end blocks. Macromolecules 1995, 28, 1444–1457.

    Article  CAS  Google Scholar 

  31. Li, C.; Tang, Y.; Armes, S. P.; Morris, C. J.; Rose, S. F.; Lloyd, A. W.; Lewis, A. L. Synthesis and characterization of biocompatible thermos-responsive gelators based on ABA triblock copolymers. Biomacromolecules 2005, 6, 994–999.

    Article  CAS  PubMed  Google Scholar 

  32. Li, C.; Buurma, N. J.; Haq, I.; Turner, C.; Armes, S. P.; Castelletto, V.; Hamley, I. W.; Lewis, A. L. Synthesis and characterization of biocompatible, thermoresponsive ABC and ABA triblock copolymer gelators. Langmuir 2005, 21, 11026–11033.

    Article  CAS  PubMed  Google Scholar 

  33. Castelletto, V.; Hamley, I. W.; Ma, Y.; Bories-Azeau, X.; Armes, S. P.; Lewis, A. L. Microstructure and physical properties of a pH-responsive gel based on a novel biocompatible ABA-type triblock copolymer. Langmuir 2004, 21, 4306–4309.

    Article  CAS  Google Scholar 

  34. Li, Y.; Tang, Y.; Narain, R.; Lewis, A. L.; Armes, S. P. Biomimetic stimulus-responsive star diblock gelators. Langmuir 2005, 21, 9946–9954.

    Article  CAS  PubMed  Google Scholar 

  35. Madsen, J.; Armes, S. P.; Bertal, K.; Lomas, H.; MacNeil, S.; Lewis, A. L. Biocompatible wound dressings based on chemically degradable triblock copolymer hydrogels. Biomacromolecules 2008, 9, 2265–2275.

    Article  CAS  PubMed  Google Scholar 

  36. Chharbonneau, C.; Chassenieux, C.; Colombani, O.; Nicolai, T. Controlling the dynamics of self-assembled triblock copolymer networks via the pH. Macromolecules 2011, 44, 4487–4495.

    Article  CAS  Google Scholar 

  37. Mondal, T.; Ghosh, S. A remarkable impact of a minor structural variation in the chain-end on the hierarchical self-assembly of a polymeric foldamer. Polym. Chem. 2016, 7, 6735–6743.

    Article  CAS  Google Scholar 

  38. Nandi, M.; Maiti, B.; Banerjee, S.; De, P. Hydrogen bonding driven self-assembly of side-chain amino acid and fatty acid appended poly(methacrylate)s: Gelation and application in oil spill recovery. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 511–521.

    Article  CAS  Google Scholar 

  39. Nandi, M.; Banerjee, S.; De, P. Stearoyl appended pendant amino acid-based hyperbranched polymers for selective gelation of oil from oil/water mixture. Polym. Chem. 2019, 10, 1795–1805.

    Article  CAS  Google Scholar 

  40. Moad, G.; Chong, Y. K.; Postma, A.; Rizzardon, E.; Thang, S. H. Advances in RAFT polymerization: The synthesis of polymers with defined end-groups. Polymer 2005, 46, 8458–8468.

    Article  CAS  Google Scholar 

  41. Dag, A.; Zhao, J.; Stenzel, M. H. Origami with ABC triblock terpolymers based on glycopolymers: Creation of virus-like morphologies. ACS Macro Lett. 2015, 4, 579–583.

    Article  CAS  Google Scholar 

  42. Skey, J.; O’Reilly, R. K. Facile one pot synthesis of a range of reversible addition-fragmentation chain transfer (RAFT) agents. Chem. Commun. 2008, 4183–4185.

  43. Roy, S. G.; Acharya, R.; Chatterji, U.; De, P. RAFT polymerization of methacrylates containing a tryptophan moiety: Controlled synthesis of biocompatible fluorescent cationic chiral polymers with smart pH-responsiveness. Polym. Chem. 2013, 4, 1141–1152.

    Article  CAS  Google Scholar 

  44. Roy, S. G.; De, P. Facile RAFT synthesis of side-chain amino acids containing pH-responsive hyperbranched and star architectures. Polym. Chem. 2014, 5, 6365–6378.

    Article  CAS  Google Scholar 

  45. Yang, M.; Zhang, Z.; Yuan, F.; Wang, W.; Hess, S.; Lienkamp, K.; Lieberwirth, I.; Wegner, G. Self-assembled structures in organogels of amphiphilic diblock codendrimers. Chem. Eur. J. 2008, 14, 3330–3337.

    Article  CAS  PubMed  Google Scholar 

  46. Adams, D. J.; Morris, K.; Chen, L.; Serpell, L. C.; Basca, J.; Day, G. M. The delicate balance between gelation and crystallisation: Structural and computational investigations. Soft Matter 2010, 6, 4144–4156.

    Article  CAS  Google Scholar 

  47. Dastidar, P. Supramolecular gelling agents: Can they be designed? Chem. Soc. Rev. 2008, 37, 2699–2715.

    Article  CAS  PubMed  Google Scholar 

  48. Maiti, B.; De, P. RAFT polymerization of fatty acid containing monomers: Controlled synthesis of polymers from renewable resources. RSC Adv. 2013, 3, 24983–24990.

    Article  CAS  Google Scholar 

  49. Lee, C. U.; Li, A.; Ghale, K.; Zhang, D. Crystallization and melting behaviors of cyclic and linear polypeptoids with alkyl side chains. Macromolecules 2013, 46, 8213–8223.

    Article  CAS  Google Scholar 

  50. Zhang, M.; Xu, D.; Yan, X.; Chen, J.; Dong, S.; Zheng, B.; Huang, F. Self-healing supramolecular gels formed by crown ether based host-guest interactions. Angew. Chem. Int. Ed. 2012, 51, 7011–7015.

    Article  CAS  Google Scholar 

  51. Roy, S. G.; Kumar, A.; De, P. Amino acid containing cross-linked co-polymer gels: pH, thermo and salt responsiveness. Polymer 2016, 85, 1–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to Council of Scientific and Industrial Research (CSIR), Government of India, New Delhi, India, for financial support (Project: 02(0271)/16/EMR-II dated 02.12.2016). We thank Professor Tarun Kumar Mandal (Indian Association for the Cultivation of Science, Kolkata, India) for helping us with the DSC measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priyadarsi De.

Additional information

Invited article for special issue of “Ionic Polymerization”

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nandi, M., Pan, S., Ghosh, D. et al. Effects of Main-chain and Chain-ends on the Organogelation of Stearoyl Appended Pendant Valine Based Polymers. Chin J Polym Sci 37, 903–911 (2019). https://doi.org/10.1007/s10118-019-2265-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-019-2265-5

Keywords

Navigation