Skip to main content
Log in

Controllable Emission via Tuning the Size of Fluorescent Nano-probes Formed by Polymeric Amphiphiles

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Incorporating fluorophores into polymeric nanoparticles has been testified as a feasible way to improve the emitting property and bio-compatibility of nano-emitters, which can be applied as fluorescent probes in labeling cells for imaging. Plenty of efforts have been made on the above direction. However, the size effect of nano-emitters has not been addressed yet mainly given the difficulties in controlling morphology and size of the assemblies. In our preceding study, we employed post-polymerization modification method for preparing amphiphilic copolymers, and obtained core-shell (the hydrophobic fluorophores are wrapped inside the nanoparticle to form the core) assemblies in aqueous solution. By this method, we are able to regulate the ratio of the hydrophilic/hydrophobic moieties, and thus alternate the size of the assemblies in a rather simple way. In this study, we synthesized a series of random copolymers by changing the ratio of poly(ethylene glycol) to tetraphenylethylene groups. Notably, the number of repeating units of the polymer was controlled constant for all the copolymers. The self-assembly of these copolymers resulted in different sizes of nanoparticles, and the size decreased with the decreasing fraction of poly(ethylene glycol). Interestingly, the emission of the nanoparticles showed size dependence, and smaller diameter corresponded to stronger emission. Being cultured with HeLa cells, either the large (diameter of ∼300 nm) or the small (diameter of ∼180 nm) nano-emitters allowed for very high cell viabilities up to 25 µg·mL−1. Both of them can be applied in cell imaging and provide high contrast fluorescent images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jin, W. J.; Costa-Fernández, J. M.; Pereiro, R.; Sanz-Medel, A. Surface-modified CdSe quantum dots as luminescent probes for cyanide determination. Anal. Chim. Acta 2004, 522, 1–8.

    Article  CAS  Google Scholar 

  2. Gao, X.; Yang, L.; Petros, J. A.; Marshall, F. F.; Simons, J. W.; Nie, S. In vivo molecular and cellular imaging with quantum dots. Curr. Opin. Biotechnol. 2005, 16, 63–72.

    Article  CAS  PubMed  Google Scholar 

  3. Zrazhevskiy, P.; Sena, M.; Gao, X. Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chem. Soc. Rev. 2010, 39, 4326–4354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dubertret, B.; Skourides, P.; Norris, D. J.; Noireaux, V.; Brivanlou, A. H.; Libchaber, A. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 2002, 298, 1759.

    Article  CAS  PubMed  Google Scholar 

  5. Fernández-Suárez, M.; Ting, A. Y. Fluorescent probes for super-resolution imaging in living cells. Nat. Rev. Mol. Cell Biol. 2008, 9, 929–943.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang, J.; Campbell, R. E.; Ting, A. Y.; Tsien, R. Y. Creating new fluorescent probes for cell biology. Nat. Rev. Mol. Cell Biol. 2002, 3, 906–918.

    Article  CAS  PubMed  Google Scholar 

  7. Iino, R.; Koyama, I.; Kusumi, A. Single molecule imaging of green fluorescent proteins in living cells: E-cadherin forms oligomers on the free cell surface. Biophys. J. 2001, 80, 2667–2677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nagai, T.; Ibata, K.; Park, E. S.; Kubota, M.; Mikoshiba, K.; Miyawaki, A. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat. Biotechnol. 2002, 20, 87–90.

    Article  CAS  PubMed  Google Scholar 

  9. Yang, Z.; Cao, J.; He, Y.; Yang, J. H.; Kim, T.; Peng, X.; Kim, J. S. Macro-/micro-environment-sensitive chemosensing and biological imaging. Chem. Soc. Rev. 2014, 43, 4563–4601.

    Article  CAS  PubMed  Google Scholar 

  10. Wu, C.; Hansen, S. J.; Hou, Q.; Yu, J.; Zeigler, M.; Jin, Y.; Burnham, D. R.; McNeill, J. D.; Olson, J. M.; Chiu, D. T. Design of highly emissive polymer dot bioconjugates for in vivo tumor targeting. Angew. Chem. Int. Ed. 2011, 123, 3492–3496.

    Article  Google Scholar 

  11. Tao, Z.; Hong, G.; Shinji, C.; Chen, C.; Diao, S.; Antaris, A. L.; Zhang, B.; Zou, Y.; Dai, H. Biological imaging using nanoparticles of small organic molecules with fluorescence emission at wavelengths longer than 1000 nm. Angew. Chem. Int. Ed. 2013, 125, 13240–13244.

    Article  Google Scholar 

  12. Ding, D.; Goh, C. C.; Feng, G.; Zhao, Z.; Liu, J.; Liu, R.; Tomczak, N.; Geng, J.; Tang, B. Z.; Ng, L. G., Liu, B. Ultrabright organic dots with aggregation-induced emission characteristics for real-time two-photon intravital vasculature imaging. Adv. Mater. 2013, 25, 6083–6088.

    Article  CAS  PubMed  Google Scholar 

  13. Liu, L. J.; Liu, W.; Ji, G.; Wu, Z. Y.; Xu, B.; Qian, J.; Tian, W. J. NIR emission nanoparticles based on FRET composed of AIE luminogens and NIR dyes for two-photon fluorescence imaging. Chinese J. Polym. Sci. 2019, 37, 401–408.

    Article  CAS  Google Scholar 

  14. Zhang, X.; Zhang, X.; Wang, S.; Liu, M.; Tao, L.; Wei, Y. Surfactant modification of aggregation-induced emission material as biocompatible nanoparticles: Facile preparation and cell imaging. Nanoscale 2013, 5, 147–150.

    Article  CAS  PubMed  Google Scholar 

  15. Wu, X.; Sun, S.; Wang, Y.; Zhu, J.; Jiang, K.; Leng, Y.; Shu, Q.; Lin, H. A fluorescent carbon-dots-based mitochondria-targetable nanoprobe for peroxynitrite sensing in living cells. Biosens. Bioelectron. 2017, 90, 501–507.

    Article  CAS  PubMed  Google Scholar 

  16. Tang, L.; Wu, T.; Tang, Z. W.; Xiao, J. Y.; Zhuo, R. X.; Shi, B.; Liu, C. J. Water-soluble photoluminescent fullerene capped mesoporous silica for pH-responsive drug delivery and bioimaging. Nanotechnology 2016, 27, 315104.

    Article  CAS  PubMed  Google Scholar 

  17. Larson, D. R.; Zipfel, W. R.; Williams, R. M.; Clark, S. W.; Bruchez, M. P.; Wise, F. W.; Webb, W. W. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 2003, 300, 1434–1436.

    Article  PubMed  Google Scholar 

  18. Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307, 538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li, K.; Liu, B. Polymer-encapsulated organic nanoparticles for fluorescence and photoacoustic imaging. Chem. Soc. Rev. 2014, 43, 6570–6597.

    Article  CAS  PubMed  Google Scholar 

  20. Feng, G.; Mao, D.; Liu, J.; Goh, C. C.; Ng, L. G.; Kong, D.; Tang, B. Z.; Liu, B. Polymeric nanorods with aggregation-induced emission characteristics for enhanced cancer targeting and imaging. Nanoscale 2018, 10, 5869–5874.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang, X.; Wang, K.; Liu, M.; Zhang, X.; Tao, L.; Chen, Y.; Wei, Y. Polymeric AIE-based nanoprobes for biomedical applications: Recent advances and perspectives. Nanoscale 2015, 7, 11486–11508.

    Article  CAS  PubMed  Google Scholar 

  22. Zhan, R.; Pan, Y.; Manghnani, P. N.; Liu, B. AIE polymers: Synthesis, properties, and biological applications. Macromol. Biosci. 2017, 17, 1600433.

    Article  CAS  Google Scholar 

  23. Ma, C.; Xie, G.; Zhang, X.; Yang, L.; Li, Y.; Liu, H.; Wang, K.; Wei, Y. Biocompatible fluorescent polymers from PEGylation of an aggregation-induced emission dye. Dyes Pigments 2017, 139, 672–680.

    Article  CAS  Google Scholar 

  24. Zhou, D.; Zhang, G.; Yu, Q.; Gan, Z. Folic acid modified polymeric micelles for intravesical instilled chemotherapy. Chinese J. Polym. Sci. 2018, 36, 479–487.

    Article  CAS  Google Scholar 

  25. He, J.; Chen, H.; Guo, Y.; Wang, L.; Zhu, L.; Karahan, H. E.; Chen, Y. Polycondensation of a perylene bisimide derivative and L-malic acid as water-soluble conjugates for fluorescent labeling of live mammalian cells. Polymers 2018, 10, 559.

    Article  CAS  PubMed Central  Google Scholar 

  26. Wang, K.; Zhang, X.; Zhang, X.; Ma, C.; Li, Z.; Huang, Z.; Zhang, Q.; Wei, Y. Preparation of emissive glucose-containing polymer nanoparticles and their cell imaging applications. Polym. Chem. 2015, 6, 4455–4461.

    Article  CAS  Google Scholar 

  27. Huang, Z.; Zhang, X.; Zhang, X.; Wang, S.; Yang, B.; Wang, K.; Yuan, J.; Tao, L.; Wei, Y. Synthesis of amphiphilic fluorescent copolymers with smart pH sensitivity via RAFT polymerization and their application in cell imaging. Polym. Bull. 2017, 74, 4525–4536.

    Article  CAS  Google Scholar 

  28. Hua, Z.; Wilks, T. R.; Keogh, R.; Herwig, G.; Stavros, V. G.; O’Reilly, R. K. Entrapment and rigidification of adenine by a photo-cross-linked thymine network leads to fluorescent polymer nanoparticles. Chem. Mater. 2018, 30, 1408–1416.

    Article  CAS  Google Scholar 

  29. Yang, H. M.; Park, C. W.; Park, S.; Kim, J. D. Cross-linked magnetic nanoparticles with a biocompatible amide bond for cancer-targeted dual optical/magnetic resonance imaging. Colloids Surf., B 2018, 161, 183–191.

    Article  CAS  Google Scholar 

  30. Zhang, X.; Zhang, X.; Yang, B.; Liu, M.; Liu, W.; Chen, Y.; Wei, Y. Fabrication of aggregation induced emission dye-based fluorescent organic nanoparticles via emulsion polymerization and their cell imaging applications. Polym. Chem. 2014, 5, 399–404.

    Article  CAS  Google Scholar 

  31. Shen, X.; Shi, Y.; Peng, B.; Li, K.; Xiang, J.; Zhang, G.; Liu, Z.; Chen, Y.; Zhang, D. Fluorescent polymeric micelles with tetraphenylethylene moieties and their application for the selective detection of glucose. Macromol. Biosci. 2012, 12, 1583–1590.

    Article  CAS  PubMed  Google Scholar 

  32. Lim, C. K.; Kim, S.; Kwon, I. C.; Ahn, C. H.; Park, S. Y. Dyecondensed biopolymeric hybrids: Chromophoric aggregation and self-assembly toward fluorescent bionanoparticles for near infrared bioimaging. Chem. Mater. 2009, 21, 5819–5825.

    Article  CAS  Google Scholar 

  33. Lu, H.; Su, F.; Mei, Q.; Zhou, X.; Tian, Y.; Tian, W.; Johnson, R. H.; Meldrum, D. R. A series of poly[N-(2-hydroxypropyl)methacrylamide] copolymers with anthracene-derived fluorophores showing aggregation-induced emission properties for bioimaging. J. Polym. Sci., Part A: Polym. Chem. 2012, 50, 890–899.

    Article  CAS  Google Scholar 

  34. Zhang, X.; Zhang, X.; Yang, B.; Hui, J.; Liu, M.; Chi, Z.; Liu, S.; Xu, J.; Wei, Y. Facile preparation and cell imaging applications of fluorescent organic nanoparticles that combine AIE dye and ring-opening polymerization. Polym. Chem. 2014, 5, 318–322.

    Article  CAS  Google Scholar 

  35. Zhang, X.; Zhang, X.; Yang, B.; Hui, J.; Liu, M.; Liu, W.; Chen, Y.; Wei, Y. PEGylation and cell imaging applications of AIE based fluorescent organic nanoparticles via ring-opening reaction. Polym. Chem. 2014, 5, 689–693.

    Article  Google Scholar 

  36. Chithrani, B. D.; Chan, W. C. W. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett. 2007, 7, 1542–1550.

    Article  CAS  PubMed  Google Scholar 

  37. Barua, S.; Yoo, J. W.; Kolhar, P.; Wakankar, A.; Gokarn, Y. R.; Mitragotri, S. Particle shape enhances specificity of antibody-displaying nanoparticles. Proc. Nat. Acad. Sci. 2013, 110, 3270.

    Article  PubMed  Google Scholar 

  38. Salata, O. V. Applications of nanoparticles in biology and medicine. J. Nanobiotechnol. 2004, 2, 3.

    Article  Google Scholar 

  39. Albanese, A.; Tang, P. S.; Chan, W. C. W. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 2012, 14, 1–16.

    Article  CAS  PubMed  Google Scholar 

  40. Ding, L.; Zhou, S.; Li, D.; Wu, C.; Xing, Y.; Song, B. A facile method to incorporate tetraphenylethylene into polymeric amphiphiles: High emissive nanoparticles for cell-imaging. Dyes Pigments 2019, 160, 711–716.

    Article  CAS  Google Scholar 

  41. Gauthier, M. A.; Gibson, M. I.; Klok, H. A. Synthesis of functional polymers by post-polymerization modification. Angew. Chem. Int. Ed. 2009, 48, 48–58.

    Article  CAS  Google Scholar 

  42. Günay, K. A.; Theato, P.; Klok, H. A. Standing on the shoulders of Hermann Staudinger: Post-polymerization modification from past to present. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 1–28.

    Article  CAS  Google Scholar 

  43. Hong, Y.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission. Chem. Soc. Rev. 2011, 40, 5361–5388.

    Article  CAS  PubMed  Google Scholar 

  44. Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission: Together we shine, united we soar! Chem. Rev. 2015, 115, 11718–11940.

    Article  CAS  PubMed  Google Scholar 

  45. Zhao, Y.; Wu, Y.; Yan, G.; Zhang, K. Aggregation-induced emission block copolymers based on ring-opening metathesis polymerization. RSC Adv. 2014, 4, 51194–51200.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21674075 and 21233003), the Natural Science Foundation of Jiangsu Province (BK20161211), Key University Science Research Project of Jiangsu Province (17KJA150007), and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, XC., Zhou, SX., Ding, L. et al. Controllable Emission via Tuning the Size of Fluorescent Nano-probes Formed by Polymeric Amphiphiles. Chin J Polym Sci 37, 767–773 (2019). https://doi.org/10.1007/s10118-019-2256-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-019-2256-6

Keywords

Navigation