Skip to main content
Log in

Research on the Glass Transition Temperature and Mechanical Properties of Poly(vinyl chloride)/Dioctyl Phthalate (PVC/DOP) Blends by Molecular Dynamics Simulations

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

To effectively improve the performance and expand the applications of polymers, molecular dynamics (MD) simulations with the COMPASS force field have been applied to predict the miscibility, glass transition temperature (Tg), and mechanical properties of poly(vinyl chloride)/dioctyl phthalate (PVC/DOP) blends. The solubility parameter values obtained are in good agreement with the reference data and the little difference (∣Δδ∣ < 2.0 MPa0.5) between two components indicates that PVC/DOP is a miscible system. Tg is predicted by the slope of the free volume and density versus temperature simulation data based on density and free volume theory which is agree well with the experimental data. In addition, the analyses of mechanical properties results indicate that the values of Young’s modulus (E), bulk modulus (K), and shear modulus (G) decrease with the addition of DOP, demonstrating that the rigidity of material is weakened and the ductility is improved. The mechanical properties can also be effectively improved by increasing the temperature, which may provide a more flexible mixture, with lower E, K, G but an increased ductility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhou, L. L.; Wang, B. B.; Xiao, L. F.; Liang, J. F. Testing and analysis of properties of PVC plasticized with environment-friendly plasticizers. Chemical Research and Application (in Chinese) 2018, 30, 597–601. https://doi.org/10.1007/s10118-019-2249-5

    Google Scholar 

  2. Li, X. G.; Zhao, J.; Fei, Y. N.; Sun, G. F.; Li, J.; Sui, Z. Y.; Yu, H. B. Synthesis of environmental plasticizer di(2-ethylhexy)-1, 2-cyclohexane dicarboxylate. Journal of Petrochemical Universities (in Chinese) 2013, 26, 33–36.

    CAS  Google Scholar 

  3. Zhang, D. H.; He, M.; Hu, Z.; Guo, J. B. Effect of content of plasticizer DOP on the properties of soft PVC. Plastic Additives (in Chinese) 2015, 43–44.

    Google Scholar 

  4. Liu, Y. H.; Xing, G. Q.; Feng, B. L.; Chen, L. Z. Application of environment-friendly plasticizers in PVC gloves. Plastic Additives (in Chinese) 2017, 21–22.

    Google Scholar 

  5. Starnes, W. H. Structural defects in poly(vinyl chloride). J. Polym. Sci.; Part A: Polym. Chem. 2005, 43, 2451–2467.

    Article  CAS  Google Scholar 

  6. Hu, W. T.; Li, J. G.; Ding, X. J.; Liu, F. J.; Wei, Y. F. Modification of plasticized PVC with three kinds of modifiers. China Plastics (in Chinese) 2014, 28, 60–64.

    CAS  Google Scholar 

  7. Xu, H. Z.; Tang, W.; Tan, L. L. Advances in research and development of environment-friendly Ca/Zn heat stabilizers complex for PVC. Plastic Additives (in Chinese) 2008, 8, 11–15.

    Google Scholar 

  8. Li, J.; Jin, S. H.; Lan, G. C.; Chen, S. S.; Li, L. J. Molecular dynamics simulations on miscibility, glass transition temperature and mechanical properties of PMMA/DBP binary system. J. Mol. Graph. Model. 2018, 84, 182–188.

    Article  CAS  PubMed  Google Scholar 

  9. Luo, Y. L.; Wang, R. G.; Wang, W.; Wang, W.; Zhang, L. Q.; Wu, S. Z. Molecular dynamics simulation insight into two-component solubility parameters of graphene and thermodynamic compatibility of graphene and styrene butadiene rubber. J. Phys. Chem. C 2017, 121, 10163–10173.

    Article  CAS  Google Scholar 

  10. Shu, Y.; Yi, Y.; Huo, J. C.; Liu, N.; Wang, K.; Lu, Y. Y.; Wang, X. C.; Wu, Z. K.; Shu, Y. J.; Zhang, S. W. Interactions between poly-(phthalazinone ether sulfone ketone) (PPESK) and TNT or TATB in polymer bonded explosives: A molecular dynamic simulation study. J. Mol. Model. 2017, 23, 334.

    Article  CAS  PubMed  Google Scholar 

  11. Lan, G. C.; Jin, S. H.; Li, J.; Wang, J. Y.; Lu, Z. Y.; Wu, N. N.; Li, L. J.; Wang, D. X. Miscibility, glass transition temperature and mechanical properties of NC/DBP binary systems by molecular dynamics. Propell. Explos. Pyrot. 2018, 43, 559–567.

    Article  CAS  Google Scholar 

  12. Song, Y. H.; Bu, J.; Zuo, M.; Gao, Y.; Zhang, W. J.; Zheng, Q. Glass transition of poly(methyl methacrylate) filled with nanosilica and core-shell structured silica. Polymer 2017, 127, 141–149.

    Article  CAS  Google Scholar 

  13. Ju, S. P.; Chen, H. Y.; Shih, C. W. J. Investigating mechanical properties of polymethylmethacrylate/silver nanoparticle composites by molecular dynamics simulation. J. Nanopart. Res. 2017, 20, 1.

    Article  CAS  Google Scholar 

  14. Lee, M. W.; Wang, T. Y.; Tsai, J. L. Mechanical properties of nanocomposites with functionalized graphene. J. Compos. Mater. 2016, 50, 3779–3789.

    Article  CAS  Google Scholar 

  15. Okabe, T.; Oya, Y.; Tanabe, K.; Kikugawa, G.; Yoshioka, K. Molecular dynamics simulation of crosslinked epoxy resins: Curing and mechanical properties. Eur. Polym. J. 2016, 80, 78–88.

    Article  CAS  Google Scholar 

  16. Sun, H. COMPASS: An ab initio force-field optimized for condensed-phase applications-overview with detailed on alkane and benzene compounds. J. Phys. Chem. B 1988, 102, 7338–7364.

    Article  Google Scholar 

  17. Duan, X. H.; Wei, C. X.; Liu, Y. G.; Pei, C. H. A molecular dynamics simulation of solvent effects on the crystal morphology of HMX. J. Hazard. Mater. 2010, 174, 175–180.

    Article  CAS  PubMed  Google Scholar 

  18. Li, J.; Jin, S. H.; Lan, G. C.; Xu, Z. S.; Wu, N. N.; Chen, S. S.; Li, L. J. The effect of solution conditions on the crystal morphology of β-HMX by molecular dynamics simulations. J. Cryst. Growth 2019, 507, 38–45.

    Article  CAS  Google Scholar 

  19. Zhu, W.; Xiao, J. J.; Zhu, W. H.; Xiao, H. M. Molecular dynamics simulations of RDX and RDX-based plastic-bonded explosives. J. Hazard. Mater. 2009, 164, 1082–1088.

    Article  CAS  PubMed  Google Scholar 

  20. Lu, Y. Y.; Shu, Y. J.; Liu, N.; Shu, Y.; Wang, K.; Wu, Z. K.; Wang, X. C.; Ding, X. Y. Theoretical simulations on the glass transition temperatures and mechanical properties of modified glycidyl azide polymer. Comp. Mater. Sci. 2017, 139, 132–139.

    Article  CAS  Google Scholar 

  21. Lan, G. C.; Jin, S. H.; Li, J.; Wang, J. Y.; Li, J. X.; Chen, S. S.; Li, L. J. The study of external growth environments on the crystal morphology of ε-HNIW by molecular dynamics simulation. J. Mater. Sci. 2018, 53, 12921–12936.

    Article  CAS  Google Scholar 

  22. Basconi, J. E.; Shirts, M. R. Effects of temperature control algorithms on transport properties and kinetics in molecular dynamics simulations. J. Chem. Theory. Comput. 2013, 9, 2887–2899.

    Article  CAS  PubMed  Google Scholar 

  23. Kolafa, J.; Lísal, M. Time-reversible velocity predictors for verlet integration with velocity-dependent right-hand side. J. Chem. Theory Comput. 2011, 7, 3596–3607.

    Article  CAS  PubMed  Google Scholar 

  24. Rahmati, M.; Modarress, H.; Gooya, R. Molecular simulation study of polyurethane membranes. Polymer 2012, 53, 1939–1950.

    Article  CAS  Google Scholar 

  25. Kitson, D. H.; Hagler, A. T. Theoretical studies of the structure and molecular dynamics of a peptide crystal. Biochemistry 1988, 27, 5246–5257.

    Article  CAS  PubMed  Google Scholar 

  26. Yu, Y. H.; Chen, S. S.; Li, X.; Zhu, J. P.; Liang, H.; Zhang, X. X.; Shu, Q. H. Molecular dynamics simulations for 5,5′-bistetrazole-1,1′-diolate (TKX-50) and its PBXs. RSC Adv. 2016, 6, 20034–20041.

    Article  CAS  Google Scholar 

  27. Zhang, M. Z.; Choi, P.; Sundararaj, U. Molecular dynamics and thermal analysis study of anomalous thermodynamic behavior of poly(ether imide)/polycarbonate blends. Polymer 2003, 44, 1979–1986.

    Article  CAS  Google Scholar 

  28. Hildebrand, J. H.; Scott, R. L., in The solubility of non-electrodytes, New York, Reinhold Publishing Corp, 1950, p.424.

    Google Scholar 

  29. Goharshadi, E. K.; Akhlamadi, G.; Mahdizadeh, S. J. Investigation of graphene oxide nanosheets dispersion in water based on solubility parameters: A molecular dynamics simulation study. RSC Adv. 2015, 5, 106421–106430.

    Article  CAS  Google Scholar 

  30. Jin, R. G.; Hua, Y. Q., in Polymer physics (in Chinese), Beijing, Chemical Industry Press, 2007, p.74.

    Google Scholar 

  31. Forster, A.; Hempenstall, J.; Tucker, I.; Rades, T. Selection of excipients for melt extrusion with two poorly water-soluble drugs by solubility parameter calculation and thermal analysis. Int. J. Pharm. 2001, 226, 147–161.

    Article  CAS  PubMed  Google Scholar 

  32. Sun, Y. B.; Hui, J. M.; Cao, X. M., in Military use blended explosives (in Chinese), Beijing, Weapon Industry Press, 1995.

    Google Scholar 

  33. Yang, Q.; Chen, X.; He, Z. W.; Lan, F. T.; Liu, H. The glass transition temperature measurements of polyethylene: Determined by using molecular dynamic method. RSC Adv. 2016, 6, 12053–12060.

    Article  CAS  Google Scholar 

  34. Fu, Y. Z.; Hu, S. Q.; Lan, Y. H.; Liu, Y. Q. Molecular dynamics simulation on the glass transition temperature and mechanical properties of HTPB/plasticizer blends. Acta Chimica Sinica (in Chinese) 2010, 68, 809–813.

    CAS  Google Scholar 

  35. Jaidann, M.; Abou-Rachid, H.; Lafleur-Lambert, X.; Lussier, L. S.; Gagnon, N.; Brisson, J. Modeling and measurement of glass transition temperatures of energetic and inert systems. Polym. Eng. Sci. 2008, 48, 1141–1150.

    Article  CAS  Google Scholar 

  36. Xu, X. J.; Xiao, J. J.; Huang, H.; Li, J. S.; Xiao, H. M. Molecular dynamic simulations on the structures and properties of ε-CL-20(001)/F-2314 PBX. J. Hazard. Mater. 2010, 175, 423–428.

    Article  CAS  PubMed  Google Scholar 

  37. Watt, J. P.; Davies, G. F.; O’Connell, R. J. The elastic properties of composite materials. Rev. Geophys. Space Phys. 1976, 14, 541–563.

    Article  CAS  Google Scholar 

  38. Pugh, S. F. Relation between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. A 1954, 45, 823–843.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Jie Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Jin, SH., Lan, GC. et al. Research on the Glass Transition Temperature and Mechanical Properties of Poly(vinyl chloride)/Dioctyl Phthalate (PVC/DOP) Blends by Molecular Dynamics Simulations. Chin J Polym Sci 37, 834–840 (2019). https://doi.org/10.1007/s10118-019-2249-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-019-2249-5

Keywords

Navigation