Neodymium-catalyzed Polymerization of C5 Fraction: Efficient Synthesis of 1,3-Pentadiene-isoprene Copolymer Rubbers

Abstract

The polymerization of C5 fraction without separation and concentration by using a commercial available Nd(P204)3/ AliBu3/AlEt2Cl has afforded for the first time a new kind of 1,3-pentadiene-isoprene random copolymers as rubber materials. Isoprene (IP) and E-1,3-pentadiene (EPD) acted as polymerization monomers, cyclopentadiene acted as poison, and other substances like alkanes, monoolefins, Z-1,3-pentadiene acted as solvents in this multicomponent C5 fraction polymerization system. The data of kinetic experiments, NMR, and DSC indicated that the polymerization of C5 fraction by Nd(P204)3/AliBu3/AlEt2Cl afforded the IP-EPD random copolymers. By controlling polymerization conditions such as [Al]/[Nd]/[Cl] molar ratio and polymerization temperature, the random EPD-IP copolymers containing high cis-1,4-poly(IP) (with selectivity 96%) and moderate cis-1,4-poly(EPD) (with selectivity 60%) units with a low glass transition temperature (about −60 °C), controllable molecular weight (Mn = 3.8 × 104‒14.3 × 104), and moderate molecular weight distribution (Mw/Mn = 2.17‒2.78) were obtained in a high yield.

This is a preview of subscription content, log in to check access.

References

  1. 1

    Fang, J. Research progress for the separation method of C5 fraction and development direction of its downstream products. Mod. Chem. Ind. 2018, 32, 39–42.

    Google Scholar 

  2. 2

    Liu, D. L.; Guo, L. H.; Chi, Q. H.; Zhang, D. S. Comprehensive utilization of C5 resource. Sci. & Technol. Chem. Ind. 2005, 13, 58–61.

    Google Scholar 

  3. 3

    Li, X. G.; Gong, S. H.; Liu, Y.; Zhang, Y. Comprehensive utilization of C5 fraction. Tianjin Chem. Ind. 2005, 13, 58–61.

    Google Scholar 

  4. 4

    Guo, L.; Li, D. F.; Wang, J. F. Progresses in the separation of steam cracking C5 fraction at home. Petrochem. Technol. 2015, 44, 252–260.

    CAS  Google Scholar 

  5. 5

    Wang, J.; Gao, Z.; Qi, Y. Initiator/TiCl4 initiated cationic polymerization of pyrolysis gasoline distillate. RSC Adv. 2014, 47, 24852–24858.

    Google Scholar 

  6. 6

    Petrova, L. M.; Abbakumova, N. A.; Foss, T. R.; Romanov, G. V. Structural features of asphaltene and petroleum resin fractions. Pet. Chem. 2011, 51, 252–256.

    Article  CAS  Google Scholar 

  7. 7

    Wang, D.; Pan, Y.; Zhang H. A quantum chemistry study on structural properties of petroleum resin. Pet. Sci. 2007, 4, 89–93.

    Article  CAS  Google Scholar 

  8. 8

    Zhou, X.; Zhang, P.; Li, Z. Miscibility behavior of ethylene/vinyl acetate and C5 petroleum resin by FTIR imaging. Anal. Sci. 2007, 23, 877–880.

    Article  CAS  PubMed  Google Scholar 

  9. 9

    Liang, J.; Chang, S.; Feng, N. Effect of C5 petroleum resin content on damping behavior, morphology, and mechanical propenies of BIIR/BR vulcanizates. J. Appl. Polym. Sci. 2013, 130, 510–515.

    Article  CAS  Google Scholar 

  10. 10

    Wang, G. Q.; Zhang, W. X.; Liang, J. C.; Chen, G. Y.; Wei, Z. Y.; Zhang, L. Preparation of C5 petroleum resins using Et3NHCl-AlCl3 as catalyst. Asian J. Chem. 2013, 25, 2829–2832.

    Article  CAS  Google Scholar 

  11. 11

    Lopez-sanchez, J. A.; Lamberti, M.; Pappalardo, D.; Pellecchia, C. Polymerization of conjugated dienes promoted by bis(phenoxyimino) titanium catalysts. Macromolecules 2003, 36, 9260–9263.

    Article  CAS  Google Scholar 

  12. 12

    Ricci, G.; Italia, S.; Porri, L. Polymerization of (Z)-1,3- pentadiene with CpTiCl3/MAO. Effect of temperature on polymer structure and mechanistic implications. Macromolecules 1994, 27, 868–869.

    Article  CAS  Google Scholar 

  13. 13

    Purevsuren, B.; Allegra, G.; Stefano, V. M.; Farina, A.; Porri, L.; Ricci, G. Cis-isotactic 1,4-polypentadiene. NMR solution charaterization and crystal structure of polymers prepared with neodymium-catalyic systems. Polym. J. 1998, 30, 431–434.

    Article  CAS  Google Scholar 

  14. 14

    Ricci, G.; Battistella, M.; Porri, L. Chemoselectivity and stereospecificity of chromium(II) catalysts for 1,3-diene polymerization. Macromolecules 2001, 34, 5766–5769.

    Article  CAS  Google Scholar 

  15. 15

    Costabile, C.; Guerra, G.; Longo, P.; Pragliola, S. High selectivity in polymerization of (Z)-1,3-pentadiene, with the CpTiCl3-MAO catalytic system, generated by backbiting coordinations of the growing polydienyl chain. Macromolecules 2004, 37, 2016–2020.

    Article  CAS  Google Scholar 

  16. 16

    Ricci, G.; Forni, A.; Boglia, A.; Motta, T.; Zannoni, G.; Canetti, M.; Bertini F. Synthesis and X-ray structure of CoCl2(PiPrPh2)2. A new highly active and stereospecific catalyst for 1,2 polymerization of conjugated dienes when used in association with MAO. Macromolecules 2005, 38, 1064–1070.

    Article  CAS  Google Scholar 

  17. 17

    Ricci, G.; Alberti, E.; Zetta, L.; Motta, T.; Bertini, F.; Mendichi, R.; Arosio, P.; Famulari, A.; Meille, S. V. Synthesis, characterization and molecular conformation of syndiotactic 1,2- polypentadiene: The cis polymer. Macromolecules. 2005, 38, 8353–8361.

    Article  CAS  Google Scholar 

  18. 18

    Ricci, G.; Motta, T.; Boglia, A.; Alberti, E.; Arosio, P.; Famulari, A.; Meille, S. V. Synthesis, characterization, and crystalline structure of syndiotactic 1,2-polypentadiene: The trans polymer. Macromolecules 2005, 38, 8345–8352.

    Article  CAS  Google Scholar 

  19. 19

    Costabile, C.; Guerra, G.; Longo, P.; Pragliola, S. Activity and microstructure variations with temperature in conjugated diene polymerizations catalyzed by CpTiCl3-MAO. Macromolecules 2005, 38, 6327–6335.

    Article  CAS  Google Scholar 

  20. 20

    Costabile, C.; Capacchione, C.; Saviello, D.; Proto, A. Mechanistic studies on conjugated diene polymerizations promoted by a titanium complex containing a tetradentate [OSSO]-type bis(phenolato) ligand. Macromolecules 2012, 45, 6363–6370.

    Article  CAS  Google Scholar 

  21. 21

    Jia, X.; Hu, Y. M.; Dai, Q. Q.; Bi, J. F.; Bai, C. X.; Zhang, X. Q. Synthesis of syndiotactic cis-1,4-polypentadiene by using ternary neodymium-based catalyst. Polymer 2013, 2973–2978.

    Google Scholar 

  22. 22

    Nishii, K.; Kang, X.; Nishiura, M.; Luo, Y.; Hou, Z. Regio- and stereospecific living polymerization and copolymerization of (E)-1,3-pentadiene with 1,3-butadiene by half-sandwich scandium catalystst. Dalton Trans. 2013, 42, 9030–9032.

    Article  CAS  PubMed  Google Scholar 

  23. 23

    Liu, K.; He, Q.; Ren, L.; Xu, F.; Xu W. J. Living anionic polymerization of (E)-1,3-pentadiene and (Z)-1,3-pentadiene isomers. J. Polym. Sci., Part A: Polym. Chem. 2016, 54, 2291–2301.

    Article  CAS  Google Scholar 

  24. 24

    Porri, L.; Carbonaro, A.; Ciampelli, F. Copolymerization of 1,3-butadiene and 1,3-pentadiene with homogeneous Al (C2H5)2Cl-vanadium compounds catalyst system. 1. Preparation and properties of the copolymers. Makromol. Chem. 1963, 61, 90–103.

    Article  CAS  Google Scholar 

  25. 25

    Loria, M.; Proto, A.; Capacchione, C. Styrene-isoprene and styrene-1,3-pentadiene copolymerisation catalyzed by titanium [OSSO]-type catalysts. RSC Adv. 2015, 5, 65998–66004.

    Article  CAS  Google Scholar 

  26. 26

    Longo, P.; Proto, A.; Oliva, P.; Sessa, I.; Zambelli, A. Copolymerization of styrene with (Z)-1,3-pentadiene in the presence of a syndiotactic-specific catalyst. J. Polym. Sci., Part A: Polym. Chem. 1997, 35, 2697–2702.

    Article  CAS  Google Scholar 

  27. 27

    Wang, Y.; Ma, H. Rare earth catalytic synthesis of rubber. Chem. Commun. 2012, 48, 6729–6731.

    Article  CAS  Google Scholar 

  28. 28

    Qiang, X.; Li, L.; Guo, F.; Shi, Z.; Ma, H.; Wang, Y.; Wang, Y.; Li, Y. Terpolymer of neodymiun-catalyzed styrene, isoprene and butadiene: Efficient synthesis of integral rubber containing atactic styrene-styrene sequences and high cis-1,4 polyconjugated- olefins. Polym. Eng. Sci. 2014, 54, 1858–1963.

    Article  CAS  Google Scholar 

  29. 29

    Bryan, S. B.; Gabriel, E. S.; Nathaniel, A. L. Simple and accurate determination of reactivity ratios using a nonterminal model of chain copolymerization. Macromolecules 2015, 48, 6922–6930.

    Article  CAS  Google Scholar 

  30. 30

    Zhang, L. X.; Luo, Y.; Hou, Z. Unprecedented isospecific 3,4- polymerization of isoprene by cationic rare earth metal alkyl species resulting from a binuclear precursor. J. Am. Chem. Soc. 2015, 127, 14562–14563.

    Article  CAS  Google Scholar 

  31. 31

    Zhang, J. C.; Xue, Z. H. A comparative study on the properties of eucommia ulmoides gum and synthetic trans-1,4-polyisoprene. Polym. Test. 2011, 30, 753–759.

    Article  CAS  Google Scholar 

  32. 32

    Guo, F.; Meng, R.; Li, Y.; Hou, Z. Highly cis-1,4-selective terpolymerization of 1,3-butadiene and isoprene with styrene by a C5H5-ligated scandium catalyst. Polymer 2015, 76, 159–167.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 21674016).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fang Guo.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hou, J., Guo, F., Hu, Q. et al. Neodymium-catalyzed Polymerization of C5 Fraction: Efficient Synthesis of 1,3-Pentadiene-isoprene Copolymer Rubbers. Chin J Polym Sci 37, 674–680 (2019). https://doi.org/10.1007/s10118-019-2244-x

Download citation

Keywords

  • C5 fraction
  • Neodymium
  • Isoprene
  • 1,3-Pentadiene
  • Copolymerization