Neodymium-catalyzed Polymerization of C5 Fraction: Efficient Synthesis of 1,3-Pentadiene-isoprene Copolymer Rubbers

  • Jin-Yan Hou
  • Fang GuoEmail author
  • Qian Hu
  • Yang Li
  • Zhao-Min Hou


The polymerization of C5 fraction without separation and concentration by using a commercial available Nd(P204)3/ AliBu3/AlEt2Cl has afforded for the first time a new kind of 1,3-pentadiene-isoprene random copolymers as rubber materials. Isoprene (IP) and E-1,3-pentadiene (EPD) acted as polymerization monomers, cyclopentadiene acted as poison, and other substances like alkanes, monoolefins, Z-1,3-pentadiene acted as solvents in this multicomponent C5 fraction polymerization system. The data of kinetic experiments, NMR, and DSC indicated that the polymerization of C5 fraction by Nd(P204)3/AliBu3/AlEt2Cl afforded the IP-EPD random copolymers. By controlling polymerization conditions such as [Al]/[Nd]/[Cl] molar ratio and polymerization temperature, the random EPD-IP copolymers containing high cis-1,4-poly(IP) (with selectivity 96%) and moderate cis-1,4-poly(EPD) (with selectivity 60%) units with a low glass transition temperature (about −60 °C), controllable molecular weight (Mn = 3.8 × 104‒14.3 × 104), and moderate molecular weight distribution (Mw/Mn = 2.17‒2.78) were obtained in a high yield.


C5 fraction Neodymium Isoprene 1,3-Pentadiene Copolymerization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the National Natural Science Foundation of China (No. 21674016).

Supplementary material

10118_2019_2244_MOESM1_ESM.pdf (1.2 mb)
Neodymium-catalyzed Polymerization of C5 Fraction: Efficient Synthesis of 1,3-Pentadiene-isoprene Copolymer Rubbers


  1. 1.
    Fang, J. Research progress for the separation method of C5 fraction and development direction of its downstream products. Mod. Chem. Ind. 2018, 32, 39–42.Google Scholar
  2. 2.
    Liu, D. L.; Guo, L. H.; Chi, Q. H.; Zhang, D. S. Comprehensive utilization of C5 resource. Sci. & Technol. Chem. Ind. 2005, 13, 58–61.Google Scholar
  3. 3.
    Li, X. G.; Gong, S. H.; Liu, Y.; Zhang, Y. Comprehensive utilization of C5 fraction. Tianjin Chem. Ind. 2005, 13, 58–61.Google Scholar
  4. 4.
    Guo, L.; Li, D. F.; Wang, J. F. Progresses in the separation of steam cracking C5 fraction at home. Petrochem. Technol. 2015, 44, 252–260.Google Scholar
  5. 5.
    Wang, J.; Gao, Z.; Qi, Y. Initiator/TiCl4 initiated cationic polymerization of pyrolysis gasoline distillate. RSC Adv. 2014, 47, 24852–24858.Google Scholar
  6. 6.
    Petrova, L. M.; Abbakumova, N. A.; Foss, T. R.; Romanov, G. V. Structural features of asphaltene and petroleum resin fractions. Pet. Chem. 2011, 51, 252–256.CrossRefGoogle Scholar
  7. 7.
    Wang, D.; Pan, Y.; Zhang H. A quantum chemistry study on structural properties of petroleum resin. Pet. Sci. 2007, 4, 89–93.CrossRefGoogle Scholar
  8. 8.
    Zhou, X.; Zhang, P.; Li, Z. Miscibility behavior of ethylene/vinyl acetate and C5 petroleum resin by FTIR imaging. Anal. Sci. 2007, 23, 877–880.CrossRefGoogle Scholar
  9. 9.
    Liang, J.; Chang, S.; Feng, N. Effect of C5 petroleum resin content on damping behavior, morphology, and mechanical propenies of BIIR/BR vulcanizates. J. Appl. Polym. Sci. 2013, 130, 510–515.CrossRefGoogle Scholar
  10. 10.
    Wang, G. Q.; Zhang, W. X.; Liang, J. C.; Chen, G. Y.; Wei, Z. Y.; Zhang, L. Preparation of C5 petroleum resins using Et3NHCl-AlCl3 as catalyst. Asian J. Chem. 2013, 25, 2829–2832.CrossRefGoogle Scholar
  11. 11.
    Lopez-sanchez, J. A.; Lamberti, M.; Pappalardo, D.; Pellecchia, C. Polymerization of conjugated dienes promoted by bis(phenoxyimino) titanium catalysts. Macromolecules 2003, 36, 9260–9263.CrossRefGoogle Scholar
  12. 12.
    Ricci, G.; Italia, S.; Porri, L. Polymerization of (Z)-1,3- pentadiene with CpTiCl3/MAO. Effect of temperature on polymer structure and mechanistic implications. Macromolecules 1994, 27, 868–869.CrossRefGoogle Scholar
  13. 13.
    Purevsuren, B.; Allegra, G.; Stefano, V. M.; Farina, A.; Porri, L.; Ricci, G. Cis-isotactic 1,4-polypentadiene. NMR solution charaterization and crystal structure of polymers prepared with neodymium-catalyic systems. Polym. J. 1998, 30, 431–434.CrossRefGoogle Scholar
  14. 14.
    Ricci, G.; Battistella, M.; Porri, L. Chemoselectivity and stereospecificity of chromium(II) catalysts for 1,3-diene polymerization. Macromolecules 2001, 34, 5766–5769.CrossRefGoogle Scholar
  15. 15.
    Costabile, C.; Guerra, G.; Longo, P.; Pragliola, S. High selectivity in polymerization of (Z)-1,3-pentadiene, with the CpTiCl3-MAO catalytic system, generated by backbiting coordinations of the growing polydienyl chain. Macromolecules 2004, 37, 2016–2020.CrossRefGoogle Scholar
  16. 16.
    Ricci, G.; Forni, A.; Boglia, A.; Motta, T.; Zannoni, G.; Canetti, M.; Bertini F. Synthesis and X-ray structure of CoCl2(PiPrPh2)2. A new highly active and stereospecific catalyst for 1,2 polymerization of conjugated dienes when used in association with MAO. Macromolecules 2005, 38, 1064–1070.CrossRefGoogle Scholar
  17. 17.
    Ricci, G.; Alberti, E.; Zetta, L.; Motta, T.; Bertini, F.; Mendichi, R.; Arosio, P.; Famulari, A.; Meille, S. V. Synthesis, characterization and molecular conformation of syndiotactic 1,2- polypentadiene: The cis polymer. Macromolecules. 2005, 38, 8353–8361.CrossRefGoogle Scholar
  18. 18.
    Ricci, G.; Motta, T.; Boglia, A.; Alberti, E.; Arosio, P.; Famulari, A.; Meille, S. V. Synthesis, characterization, and crystalline structure of syndiotactic 1,2-polypentadiene: The trans polymer. Macromolecules 2005, 38, 8345–8352.CrossRefGoogle Scholar
  19. 19.
    Costabile, C.; Guerra, G.; Longo, P.; Pragliola, S. Activity and microstructure variations with temperature in conjugated diene polymerizations catalyzed by CpTiCl3-MAO. Macromolecules 2005, 38, 6327–6335.CrossRefGoogle Scholar
  20. 20.
    Costabile, C.; Capacchione, C.; Saviello, D.; Proto, A. Mechanistic studies on conjugated diene polymerizations promoted by a titanium complex containing a tetradentate [OSSO]-type bis(phenolato) ligand. Macromolecules 2012, 45, 6363–6370.CrossRefGoogle Scholar
  21. 21.
    Jia, X.; Hu, Y. M.; Dai, Q. Q.; Bi, J. F.; Bai, C. X.; Zhang, X. Q. Synthesis of syndiotactic cis-1,4-polypentadiene by using ternary neodymium-based catalyst. Polymer 2013, 2973–2978.Google Scholar
  22. 22.
    Nishii, K.; Kang, X.; Nishiura, M.; Luo, Y.; Hou, Z. Regio- and stereospecific living polymerization and copolymerization of (E)-1,3-pentadiene with 1,3-butadiene by half-sandwich scandium catalystst. Dalton Trans. 2013, 42, 9030–9032.CrossRefGoogle Scholar
  23. 23.
    Liu, K.; He, Q.; Ren, L.; Xu, F.; Xu W. J. Living anionic polymerization of (E)-1,3-pentadiene and (Z)-1,3-pentadiene isomers. J. Polym. Sci., Part A: Polym. Chem. 2016, 54, 2291–2301.CrossRefGoogle Scholar
  24. 24.
    Porri, L.; Carbonaro, A.; Ciampelli, F. Copolymerization of 1,3-butadiene and 1,3-pentadiene with homogeneous Al (C2H5)2Cl-vanadium compounds catalyst system. 1. Preparation and properties of the copolymers. Makromol. Chem. 1963, 61, 90–103.CrossRefGoogle Scholar
  25. 25.
    Loria, M.; Proto, A.; Capacchione, C. Styrene-isoprene and styrene-1,3-pentadiene copolymerisation catalyzed by titanium [OSSO]-type catalysts. RSC Adv. 2015, 5, 65998–66004.CrossRefGoogle Scholar
  26. 26.
    Longo, P.; Proto, A.; Oliva, P.; Sessa, I.; Zambelli, A. Copolymerization of styrene with (Z)-1,3-pentadiene in the presence of a syndiotactic-specific catalyst. J. Polym. Sci., Part A: Polym. Chem. 1997, 35, 2697–2702.CrossRefGoogle Scholar
  27. 27.
    Wang, Y.; Ma, H. Rare earth catalytic synthesis of rubber. Chem. Commun. 2012, 48, 6729–6731.CrossRefGoogle Scholar
  28. 28.
    Qiang, X.; Li, L.; Guo, F.; Shi, Z.; Ma, H.; Wang, Y.; Wang, Y.; Li, Y. Terpolymer of neodymiun-catalyzed styrene, isoprene and butadiene: Efficient synthesis of integral rubber containing atactic styrene-styrene sequences and high cis-1,4 polyconjugated- olefins. Polym. Eng. Sci. 2014, 54, 1858–1963.CrossRefGoogle Scholar
  29. 29.
    Bryan, S. B.; Gabriel, E. S.; Nathaniel, A. L. Simple and accurate determination of reactivity ratios using a nonterminal model of chain copolymerization. Macromolecules 2015, 48, 6922–6930.CrossRefGoogle Scholar
  30. 30.
    Zhang, L. X.; Luo, Y.; Hou, Z. Unprecedented isospecific 3,4- polymerization of isoprene by cationic rare earth metal alkyl species resulting from a binuclear precursor. J. Am. Chem. Soc. 2015, 127, 14562–14563.CrossRefGoogle Scholar
  31. 31.
    Zhang, J. C.; Xue, Z. H. A comparative study on the properties of eucommia ulmoides gum and synthetic trans-1,4-polyisoprene. Polym. Test. 2011, 30, 753–759.CrossRefGoogle Scholar
  32. 32.
    Guo, F.; Meng, R.; Li, Y.; Hou, Z. Highly cis-1,4-selective terpolymerization of 1,3-butadiene and isoprene with styrene by a C5H5-ligated scandium catalyst. Polymer 2015, 76, 159–167.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jin-Yan Hou
    • 1
  • Fang Guo
    • 1
    Email author
  • Qian Hu
    • 2
  • Yang Li
    • 1
  • Zhao-Min Hou
    • 1
    • 3
  1. 1.State Key Laboratory of Fine Chemicals, Department of Polymer Science and EngineeringSchool of Chemical Engineering, Dalian University of TechnologyDalianChina
  2. 2.Fushun Yikesi New Material Co., Ltd.FushunChina
  3. 3.Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource ScienceSaitamaJapan

Personalised recommendations