Controlled Polymerization of Methyl Methacrylate and Styrene via Cu(0)-Mediated RDRP by Selecting the Optimal Reaction Conditions

Abstract

Cu(0)-mediated reversible deactivation radical polymerization (Cu(0)-mediated RDRP) has been demonstrated as an excellent technique to control the polymerization of multiple vinyl monomers (e.g., acrylates, methacrylates, and styrene). However, the complexity of the reaction mechanism and multi-component system nature make it challenging to choose the appropriate conditions and consider the factors of achieving controllable polymerization when switching from one monomer to others with different reactivities. Herein, by polymerizing two examplary monomers: methyl methacrylate (MMA) and styrene via Cu(0)-mediated RDRP under different conditions, we have found that the reaction parameters (e.g., initiator, ligand, solvent, and deactivator) play a crucial role in regulating two equilibriums: (i) mutual conversion of different copper species which determines the relative concentration of Cu(I) and Cu(II), and (ii) polymerization equilibrium which is the combination of activation/deactivation, propagation and termination processes. We have demonstrated that by taking both the mutual conversion of different copper species and the polymerization equilibrium into account, the optimal reaction conditions could be selected, and the well-controlled Cu(0)-mediated RDRPs of methyl methacrylate and styrene were achieved with narrow molecular weight distributions and predicted molecular weight.

This is a preview of subscription content, log in to check access.

References

  1. 1

    Braunecker, W. A.; Matyjaszewski, K. Controlled/living radical polymerization: Features, developments, and perspectives. Prog. Polym. Sci. 2007, 32, 93–146.

    Article  CAS  Google Scholar 

  2. 2

    Anastasaki, A.; Nikolaou, V.; Haddleton, D. M. Cu(0)-mediated living radical polymerization: Recent highlights and applications: A perspective. Polym. Chem. 2016, 7, 1002–1026.

    Article  CAS  Google Scholar 

  3. 3

    Georges, M. K.; Veregin, R. P. N.; Kazmaier P. M.; Hamer, G. K. Narrow molecular weight resins by a free-radical polymerization process. Macromolecules 1993, 26, 2987–2988.

    Article  CAS  Google Scholar 

  4. 4

    Hawker, C. J.; Barclay G. G.; Dao, J. Radical crossover in nitroxide mediated "living" free radical polymerizations. J. Am. Chem. Soc. 1996, 118, 11467–11471.

    Article  CAS  Google Scholar 

  5. 5

    Wang, J. S.; Matyjaszewski, K. "Living"/controlled radical polymerization. Transition-metal-catalyzed atom transfer radical polymerization in the presence of a conventional radical initiator. Macromolecules 1995, 28, 7572–7573.

    Article  CAS  Google Scholar 

  6. 6

    Krys, P.; Matyjaszewski, K. Kinetics of atom transfer radical polymerization. Eur. Polym. J. 2017, 89, 482–523.

    Article  CAS  Google Scholar 

  7. 7

    Chiefari, J.; Chong, Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P. T.; Mayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.; Moad, G.; Rizzardo, E.; Thang, S. H. Living free-radical polymerization by reversible addition -Fragmentation chain transfer: The RAFT process. Macromolecules 1998, 31, 5559–5562.

    Article  CAS  Google Scholar 

  8. 8

    Matyjaszewski, K.; Tsarevsky, N. V.; Braunecker, W. A.; Dong, H.; Huang, J.; Jakubowski, W.; Kwak, Y.; Nicolay, R.; Tang, W.; Yoon, J. A. Role of Cu0 in controlled/“living” radical polymerization. Macromolecules 2007, 40, 7795–7806.

    Article  CAS  Google Scholar 

  9. 9

    Percec, V.; Guliashvili, T.; Ladislaw, J. S.; Wistrand, A.; Stjerndahl, A.; Sienkowska, M. J.; Monteiro, M. J.; Sahoo, S. Ultrafast synthesis of ultrahigh molar mass polymers by metalcatalyzed living radical polymerization of acrylates, methacrylates, and vinyl chloride mediated by SET at 25 °C. J. Am. Chem. Soc. 2006, 128, 14156–14165.

    Article  CAS  PubMed  Google Scholar 

  10. 10

    Anastasaki, A.; Nikolaou, V.; Nurumbetov, G.; Wilson, P.; Kempe, K.; Quinn, J. F.; Davis, T. P.; Whittaker, M. R.; Haddleton, D. M. Cu(0)-mediated living radical polymerization: A versatile tool for materials synthesis. Chem. Rev. 2016, 116, 835–877.

    Article  CAS  PubMed  Google Scholar 

  11. 11

    Zhang, N.; Samanta, S. R.; Rosen B. M.; Percec, V. Single electron transfer in radical ion and radical-mediated organic, materials and polymer synthesis. Chem. Rev. 2014, 114, 5848–5958.

    Article  CAS  PubMed  Google Scholar 

  12. 12

    Rose, B. M.; Jiang, X.; Wilson, C. J.; Nguyen, N. H.; Monteiro, M. J.; Percec, V. The disproportionation of Cu(I)X mediated by ligand and solvent into Cu(0) and Cu(II)X2 and its implications for SET-LRP. J. Polym. Sci., Part A: Polym. Chem. 2010, 47, 5606–5628.

    Article  CAS  Google Scholar 

  13. 13

    Matyjaszewski, K.; Coca, S.; Gaynor, S. G.; Wei, M.; Woodworth, B. E. Zerovalent metals in controlled/"living" radical polymerization. Macromolecules 1997, 30, 7348–7350.

    Article  CAS  Google Scholar 

  14. 14

    Wang, Y.; Zhong, M.; Zhu, W.; Peng, C. H.; Zhang, Y.; Konkolewicz, D.; Bortolamei, N.; Isse, A. A.; Gennaro, A.; Matyjaszewski, K. Reversible-deactivation radical polymerization in the presence of metallic copper. Comproportionationdisproportionation equilibria and kinetics. Macromolecules 2013, 46, 3793–3802.

    CAS  Google Scholar 

  15. 15

    Peng, C.; Zhong, M.; Wang, Y.; Kwak, Y.; Zhang, Y.; Zhu, W.; Tonge, M.; Buback, J.; Park, S.; Krys, P.; Konkolewicz, D.; Gennaro, A.; Matyjaszewski, K. Reversible-deactivation radical polymerization in the presence of metallic copper. Activation of alkyl halides by Cu0. Macromolecules 2013, 46, 3803–3815.

    Article  CAS  Google Scholar 

  16. 16

    Zhong, M.; Wang, Y.; Krys, P.; Konkolewicz, D.; Matyjaszewski, K. Reversible-deactivation radical polymerization in the presence of metallic copper. Kinetic simulation. Macromolecules 2013, 46, 3816–3827.

    CAS  Google Scholar 

  17. 17

    Konkolewicz, D.; Wang, Y.; Zhong, M.; Krys, P.; Isse, A. A.; Gennaro, A.; Matyjaszewski, K. Reversible-deactivation radical polymerization in the presence of metallic copper. A critical assessment of the SARA ATRP and SET-LRP mechanisms. Macromolecules 2013, 46, 8749–8772.

    CAS  Google Scholar 

  18. 18

    Konkolewicz, D.; Wang, Y.; Krys, P.; Zhong, M.; Isse, A. A.; Gennaro, A.; Matyjaszewski, K. SARA ATRP or SET-LRP. End of controversy? Polym. Chem. 2014, 5, 4396–4417.

    Article  CAS  Google Scholar 

  19. 19

    Harrisson, S.; Couvreur, P.; Nicolas, J. Comproportionation versus disproportionation in the initiation step of Cu(0)-mediated living radical polymerization. Macromolecules 2012, 45, 7388–7396.

    Article  CAS  Google Scholar 

  20. 20

    Tom, J.; Hornby, B.; West, A.; Harrisson, S.; Perrier, S. Copper( 0)-mediated living radical polymerization of styrene. Polym. Chem. 2010, 1, 420–422.

    Article  CAS  Google Scholar 

  21. 21

    West, A. G.; Hornby, B.; Tom, J.; Ladmiral, V.; Harrisson, S.; Perrier, S. Origin of initial uncontrolled polymerization and its suppression in the copper(0)-mediated living radical polymerization of methyl acrylate in a nonpolar solvent. Macromolecules 2011, 44, 8034–8041.

    Article  CAS  Google Scholar 

  22. 22

    Gao, Y.; Zhao, T.; Wang, W. Is it ATRP or SET-LRP? Part I: Cu0&CuII/PMDETA-mediated reversible-deactivation radical polymerization. RSC Adv. 2014, 4, 61687–61690.

    Article  CAS  Google Scholar 

  23. 23

    Gao, Y.; Zhao, T.; Zhou, D.; Greiser, U.; Wang, W. Insights into relevant mechanistic aspects about the induction period of Cu0/Me6TREN-mediated reversible-deactivation radical polymerization. Chem. Commun. 2015, 51, 14435–14438.

    Article  CAS  Google Scholar 

  24. 24

    Boyer, C.; Corrigan, N. A.; Jung, K.; Nguyen, D.; Nguyen, T. K.; Adnan, N. N. M.; Oliver, S.; Shanmugam, S.; Yeow, J. Copper-mediated living radical polymerization (atom transfer radical polymerization and copper(0) mediated polymerization): From fundamentals to bioapplications. Chem. Rev. 2016, 116, 1803–1949.

    Article  CAS  PubMed  Google Scholar 

  25. 25

    Wang, W.; Zhao, J.; Zhou, N.; Zhu, J.; Zhang, W.; Pan, X.; Zhang, Z.; Zhu, X. Reversible deactivation radical polymerization in the presence of zero-valent metals: From components to precise polymerization. Polym. Chem. 2014, 5, 3533–3546.

    Article  CAS  Google Scholar 

  26. 26

    Nanda, A. K.; Matyjaszewski, K. Effect of [bpy]/[Cu(I)] ratio, solvent, counterion, and alkyl bromides on the activation rate constants in atom transfer radical polymerization. Macromolecules 2003, 36, 599–604.

    Article  CAS  Google Scholar 

  27. 27

    Tang, W.; Matyjaszewski, K. Effects of initiator structure on activation rate constants in ATRP. Macromolecules 2007, 40, 1858–1863.

    Article  CAS  Google Scholar 

  28. 28

    Tang, W.; Matyjaszewski, K. Effect of ligand structure on activation rate constants in ATRP. Macromolecules 2006, 39, 4953–3357.

    Article  CAS  Google Scholar 

  29. 29

    Zhang, Y.; Wang, Y.; Peng, C. H.; Zhong, M.; Zhu, W.; Konkolewicz, D.; Matyjaszewski, K. Copper-mediated CRP of methyl acrylate in the presence of metallic copper: Effect of ligand structure on reaction kinetics. Macromolecules 2012, 45, 78–86.

    Article  CAS  Google Scholar 

  30. 30

    Horn, M.; Matyjaszewski, K. Solvent effects on the activation rate constant in atom transfer radical polymerization. Macromolecules 2013, 46, 3350–3357.

    Article  CAS  Google Scholar 

  31. 31

    Braunecker, W. A.; Tsarevsky, N. V.; Gennaro, A.; Matyjaszewski, K. Thermodynamic components of the atom transfer radical polymerization equilibrium: Quantifying solvent effects. Macromolecules 2009, 42, 6348–6360.

    Article  CAS  Google Scholar 

  32. 32

    Lligadas, G.; Percec, V. Alkyl chloride initiators for SET-LRP of methyl acrylate. J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 4917–4926.

    Article  CAS  Google Scholar 

  33. 33

    Matyjaszewski, K.; Göbelt, B.; Paik, H. J.; Horwitz, C. P. Tridentate nitrogen-based ligands in Cu-based ATRP: A structureactivity study. Macromolecules 2001, 34, 430–440.

    Article  CAS  Google Scholar 

  34. 34

    Matyjaszewski, K. Atom transfer radical polymerization (ATRP): Current status and future perspectives. Macromolecules 2012, 45, 4015–4039.

    Article  CAS  Google Scholar 

  35. 35

    Zebende, G.; da Silva Filho, A. Detrended multiple cross-correlation coefficient. Phys. A Stat. Mech. its Appl. 2018, 510, 91–97.

    Article  Google Scholar 

  36. 36

    Whitfield, R.; Anastasaki, A.; Jones, G. R.; Haddleton, D. M. Cu(0)-RDRP of styrene: Balancing initiator efficiency and dispersity. Polym. Chem. 2018, 9, 4395–4403.

    Article  CAS  Google Scholar 

  37. 37

    Jones, G. R.; Whitfield, R.; Anastasaki, A.; Risangud, N.; Simula, A.; Keddie, D. J.; Haddleton, D. M. Cu(0)-RDRP of methacrylates in DMSO: Importance of the initiator. Polym. Chem. 2018, 9, 2382–2388.

    Article  CAS  Google Scholar 

  38. 38

    Whitfield, R.; Anastasaki, A.; Nikolaou, V.; Jones, G. R.; Engelis, N. G.; Discekici, E. H.; Fleischmann, C.; Willenbacher, J.; Hawker, C. J.; Haddleton, D. M. Universal conditions for the controlled polymerization of acrylates, methacrylates and styrene via Cu(0)-RDRP. J. Am. Chem. Soc. 2017, 139, 1003–1010.

    Article  CAS  PubMed  Google Scholar 

  39. 39

    Wang, W.; Zhang, Z.; Wu, Y.; Zhu, J.; Cheng, Z.; Zhou, N.; Zhang, W.; Zhu, X. Ligand-free Cu(0)-mediated controlled radical polymerization of methyl methacrylate at ambient temperature. J. Polym. Sci., Part A: Polym. Chem. 2012, 50, 711–719.

    Article  CAS  Google Scholar 

  40. 40

    Hornby, B. D.; West, A. G.; Tom, J. C.; Waterson, C.; Harrisson, S. Copper(0)-mediated living radical polymerization of methyl methacrylate in a non-polar solvent. Macromol. Rapid Commun. 2010, 31, 1276–1280.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51573129), Science Foundation Ireland (SFI) Principal Investigator Award (No. 13/IA/1962), Investigator Award (No. 12/IP/1688), and Health Research Board (No. HRA-POR-2013-412).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Yong-Sheng Gao or Wen-Xin Wang.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Miao, Y., Lyu, J., Yong, H. et al. Controlled Polymerization of Methyl Methacrylate and Styrene via Cu(0)-Mediated RDRP by Selecting the Optimal Reaction Conditions. Chin J Polym Sci 37, 591–597 (2019). https://doi.org/10.1007/s10118-019-2236-x

Download citation

Keywords

  • Cu(0)-mediated RDRP
  • Reaction parameters
  • Polymerization equilibrium
  • Mutual conversion of copper species