Chinese Journal of Polymer Science

, Volume 37, Issue 6, pp 591–597 | Cite as

Controlled Polymerization of Methyl Methacrylate and Styrene via Cu(0)-Mediated RDRP by Selecting the Optimal Reaction Conditions

  • Yong-Peng Miao
  • Jing Lyu
  • Hai-Yang Yong
  • A. Sigen
  • Yong-Sheng GaoEmail author
  • Wen-Xin WangEmail author


Cu(0)-mediated reversible deactivation radical polymerization (Cu(0)-mediated RDRP) has been demonstrated as an excellent technique to control the polymerization of multiple vinyl monomers (e.g., acrylates, methacrylates, and styrene). However, the complexity of the reaction mechanism and multi-component system nature make it challenging to choose the appropriate conditions and consider the factors of achieving controllable polymerization when switching from one monomer to others with different reactivities. Herein, by polymerizing two examplary monomers: methyl methacrylate (MMA) and styrene via Cu(0)-mediated RDRP under different conditions, we have found that the reaction parameters (e.g., initiator, ligand, solvent, and deactivator) play a crucial role in regulating two equilibriums: (i) mutual conversion of different copper species which determines the relative concentration of Cu(I) and Cu(II), and (ii) polymerization equilibrium which is the combination of activation/deactivation, propagation and termination processes. We have demonstrated that by taking both the mutual conversion of different copper species and the polymerization equilibrium into account, the optimal reaction conditions could be selected, and the well-controlled Cu(0)-mediated RDRPs of methyl methacrylate and styrene were achieved with narrow molecular weight distributions and predicted molecular weight.


Cu(0)-mediated RDRP Reaction parameters Polymerization equilibrium Mutual conversion of copper species 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the National Natural Science Foundation of China (No. 51573129), Science Foundation Ireland (SFI) Principal Investigator Award (No. 13/IA/1962), Investigator Award (No. 12/IP/1688), and Health Research Board (No. HRA-POR-2013-412).

Supplementary material

10118_2019_2236_MOESM1_ESM.pdf (589 kb)
Controlled Polymerization of Methyl Methacrylate and Styrene via Cu(0)-Mediated RDRP by Selecting the Optimal Reaction Conditions


  1. 1.
    Braunecker, W. A.; Matyjaszewski, K. Controlled/living radical polymerization: Features, developments, and perspectives. Prog. Polym. Sci. 2007, 32, 93–146.CrossRefGoogle Scholar
  2. 2.
    Anastasaki, A.; Nikolaou, V.; Haddleton, D. M. Cu(0)-mediated living radical polymerization: Recent highlights and applications: A perspective. Polym. Chem. 2016, 7, 1002–1026.CrossRefGoogle Scholar
  3. 3.
    Georges, M. K.; Veregin, R. P. N.; Kazmaier P. M.; Hamer, G. K. Narrow molecular weight resins by a free-radical polymerization process. Macromolecules 1993, 26, 2987–2988.CrossRefGoogle Scholar
  4. 4.
    Hawker, C. J.; Barclay G. G.; Dao, J. Radical crossover in nitroxide mediated "living" free radical polymerizations. J. Am. Chem. Soc. 1996, 118, 11467–11471.CrossRefGoogle Scholar
  5. 5.
    Wang, J. S.; Matyjaszewski, K. "Living"/controlled radical polymerization. Transition-metal-catalyzed atom transfer radical polymerization in the presence of a conventional radical initiator. Macromolecules 1995, 28, 7572–7573.CrossRefGoogle Scholar
  6. 6.
    Krys, P.; Matyjaszewski, K. Kinetics of atom transfer radical polymerization. Eur. Polym. J. 2017, 89, 482–523.CrossRefGoogle Scholar
  7. 7.
    Chiefari, J.; Chong, Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P. T.; Mayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.; Moad, G.; Rizzardo, E.; Thang, S. H. Living free-radical polymerization by reversible addition -Fragmentation chain transfer: The RAFT process. Macromolecules 1998, 31, 5559–5562.CrossRefGoogle Scholar
  8. 8.
    Matyjaszewski, K.; Tsarevsky, N. V.; Braunecker, W. A.; Dong, H.; Huang, J.; Jakubowski, W.; Kwak, Y.; Nicolay, R.; Tang, W.; Yoon, J. A. Role of Cu0 in controlled/“living” radical polymerization. Macromolecules 2007, 40, 7795–7806.CrossRefGoogle Scholar
  9. 9.
    Percec, V.; Guliashvili, T.; Ladislaw, J. S.; Wistrand, A.; Stjerndahl, A.; Sienkowska, M. J.; Monteiro, M. J.; Sahoo, S. Ultrafast synthesis of ultrahigh molar mass polymers by metalcatalyzed living radical polymerization of acrylates, methacrylates, and vinyl chloride mediated by SET at 25 °C. J. Am. Chem. Soc. 2006, 128, 14156–14165.CrossRefGoogle Scholar
  10. 10.
    Anastasaki, A.; Nikolaou, V.; Nurumbetov, G.; Wilson, P.; Kempe, K.; Quinn, J. F.; Davis, T. P.; Whittaker, M. R.; Haddleton, D. M. Cu(0)-mediated living radical polymerization: A versatile tool for materials synthesis. Chem. Rev. 2016, 116, 835–877.CrossRefGoogle Scholar
  11. 11.
    Zhang, N.; Samanta, S. R.; Rosen B. M.; Percec, V. Single electron transfer in radical ion and radical-mediated organic, materials and polymer synthesis. Chem. Rev. 2014, 114, 5848–5958.CrossRefGoogle Scholar
  12. 12.
    Rose, B. M.; Jiang, X.; Wilson, C. J.; Nguyen, N. H.; Monteiro, M. J.; Percec, V. The disproportionation of Cu(I)X mediated by ligand and solvent into Cu(0) and Cu(II)X2 and its implications for SET-LRP. J. Polym. Sci., Part A: Polym. Chem. 2010, 47, 5606–5628.CrossRefGoogle Scholar
  13. 13.
    Matyjaszewski, K.; Coca, S.; Gaynor, S. G.; Wei, M.; Woodworth, B. E. Zerovalent metals in controlled/"living" radical polymerization. Macromolecules 1997, 30, 7348–7350.CrossRefGoogle Scholar
  14. 14.
    Wang, Y.; Zhong, M.; Zhu, W.; Peng, C. H.; Zhang, Y.; Konkolewicz, D.; Bortolamei, N.; Isse, A. A.; Gennaro, A.; Matyjaszewski, K. Reversible-deactivation radical polymerization in the presence of metallic copper. Comproportionationdisproportionation equilibria and kinetics. Macromolecules 2013, 46, 3793–3802.Google Scholar
  15. 15.
    Peng, C.; Zhong, M.; Wang, Y.; Kwak, Y.; Zhang, Y.; Zhu, W.; Tonge, M.; Buback, J.; Park, S.; Krys, P.; Konkolewicz, D.; Gennaro, A.; Matyjaszewski, K. Reversible-deactivation radical polymerization in the presence of metallic copper. Activation of alkyl halides by Cu0. Macromolecules 2013, 46, 3803–3815.CrossRefGoogle Scholar
  16. 16.
    Zhong, M.; Wang, Y.; Krys, P.; Konkolewicz, D.; Matyjaszewski, K. Reversible-deactivation radical polymerization in the presence of metallic copper. Kinetic simulation. Macromolecules 2013, 46, 3816–3827.Google Scholar
  17. 17.
    Konkolewicz, D.; Wang, Y.; Zhong, M.; Krys, P.; Isse, A. A.; Gennaro, A.; Matyjaszewski, K. Reversible-deactivation radical polymerization in the presence of metallic copper. A critical assessment of the SARA ATRP and SET-LRP mechanisms. Macromolecules 2013, 46, 8749–8772.Google Scholar
  18. 18.
    Konkolewicz, D.; Wang, Y.; Krys, P.; Zhong, M.; Isse, A. A.; Gennaro, A.; Matyjaszewski, K. SARA ATRP or SET-LRP. End of controversy? Polym. Chem. 2014, 5, 4396–4417.CrossRefGoogle Scholar
  19. 19.
    Harrisson, S.; Couvreur, P.; Nicolas, J. Comproportionation versus disproportionation in the initiation step of Cu(0)-mediated living radical polymerization. Macromolecules 2012, 45, 7388–7396.CrossRefGoogle Scholar
  20. 20.
    Tom, J.; Hornby, B.; West, A.; Harrisson, S.; Perrier, S. Copper( 0)-mediated living radical polymerization of styrene. Polym. Chem. 2010, 1, 420–422.CrossRefGoogle Scholar
  21. 21.
    West, A. G.; Hornby, B.; Tom, J.; Ladmiral, V.; Harrisson, S.; Perrier, S. Origin of initial uncontrolled polymerization and its suppression in the copper(0)-mediated living radical polymerization of methyl acrylate in a nonpolar solvent. Macromolecules 2011, 44, 8034–8041.CrossRefGoogle Scholar
  22. 22.
    Gao, Y.; Zhao, T.; Wang, W. Is it ATRP or SET-LRP? Part I: Cu0&CuII/PMDETA-mediated reversible-deactivation radical polymerization. RSC Adv. 2014, 4, 61687–61690.CrossRefGoogle Scholar
  23. 23.
    Gao, Y.; Zhao, T.; Zhou, D.; Greiser, U.; Wang, W. Insights into relevant mechanistic aspects about the induction period of Cu0/Me6TREN-mediated reversible-deactivation radical polymerization. Chem. Commun. 2015, 51, 14435–14438.CrossRefGoogle Scholar
  24. 24.
    Boyer, C.; Corrigan, N. A.; Jung, K.; Nguyen, D.; Nguyen, T. K.; Adnan, N. N. M.; Oliver, S.; Shanmugam, S.; Yeow, J. Copper-mediated living radical polymerization (atom transfer radical polymerization and copper(0) mediated polymerization): From fundamentals to bioapplications. Chem. Rev. 2016, 116, 1803–1949.CrossRefGoogle Scholar
  25. 25.
    Wang, W.; Zhao, J.; Zhou, N.; Zhu, J.; Zhang, W.; Pan, X.; Zhang, Z.; Zhu, X. Reversible deactivation radical polymerization in the presence of zero-valent metals: From components to precise polymerization. Polym. Chem. 2014, 5, 3533–3546.CrossRefGoogle Scholar
  26. 26.
    Nanda, A. K.; Matyjaszewski, K. Effect of [bpy]/[Cu(I)] ratio, solvent, counterion, and alkyl bromides on the activation rate constants in atom transfer radical polymerization. Macromolecules 2003, 36, 599–604.CrossRefGoogle Scholar
  27. 27.
    Tang, W.; Matyjaszewski, K. Effects of initiator structure on activation rate constants in ATRP. Macromolecules 2007, 40, 1858–1863.CrossRefGoogle Scholar
  28. 28.
    Tang, W.; Matyjaszewski, K. Effect of ligand structure on activation rate constants in ATRP. Macromolecules 2006, 39, 4953–3357.CrossRefGoogle Scholar
  29. 29.
    Zhang, Y.; Wang, Y.; Peng, C. H.; Zhong, M.; Zhu, W.; Konkolewicz, D.; Matyjaszewski, K. Copper-mediated CRP of methyl acrylate in the presence of metallic copper: Effect of ligand structure on reaction kinetics. Macromolecules 2012, 45, 78–86.CrossRefGoogle Scholar
  30. 30.
    Horn, M.; Matyjaszewski, K. Solvent effects on the activation rate constant in atom transfer radical polymerization. Macromolecules 2013, 46, 3350–3357.CrossRefGoogle Scholar
  31. 31.
    Braunecker, W. A.; Tsarevsky, N. V.; Gennaro, A.; Matyjaszewski, K. Thermodynamic components of the atom transfer radical polymerization equilibrium: Quantifying solvent effects. Macromolecules 2009, 42, 6348–6360.CrossRefGoogle Scholar
  32. 32.
    Lligadas, G.; Percec, V. Alkyl chloride initiators for SET-LRP of methyl acrylate. J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 4917–4926.CrossRefGoogle Scholar
  33. 33.
    Matyjaszewski, K.; Göbelt, B.; Paik, H. J.; Horwitz, C. P. Tridentate nitrogen-based ligands in Cu-based ATRP: A structureactivity study. Macromolecules 2001, 34, 430–440.CrossRefGoogle Scholar
  34. 34.
    Matyjaszewski, K. Atom transfer radical polymerization (ATRP): Current status and future perspectives. Macromolecules 2012, 45, 4015–4039.CrossRefGoogle Scholar
  35. 35.
    Zebende, G.; da Silva Filho, A. Detrended multiple cross-correlation coefficient. Phys. A Stat. Mech. its Appl. 2018, 510, 91–97.CrossRefGoogle Scholar
  36. 36.
    Whitfield, R.; Anastasaki, A.; Jones, G. R.; Haddleton, D. M. Cu(0)-RDRP of styrene: Balancing initiator efficiency and dispersity. Polym. Chem. 2018, 9, 4395–4403.CrossRefGoogle Scholar
  37. 37.
    Jones, G. R.; Whitfield, R.; Anastasaki, A.; Risangud, N.; Simula, A.; Keddie, D. J.; Haddleton, D. M. Cu(0)-RDRP of methacrylates in DMSO: Importance of the initiator. Polym. Chem. 2018, 9, 2382–2388.CrossRefGoogle Scholar
  38. 38.
    Whitfield, R.; Anastasaki, A.; Nikolaou, V.; Jones, G. R.; Engelis, N. G.; Discekici, E. H.; Fleischmann, C.; Willenbacher, J.; Hawker, C. J.; Haddleton, D. M. Universal conditions for the controlled polymerization of acrylates, methacrylates and styrene via Cu(0)-RDRP. J. Am. Chem. Soc. 2017, 139, 1003–1010.CrossRefGoogle Scholar
  39. 39.
    Wang, W.; Zhang, Z.; Wu, Y.; Zhu, J.; Cheng, Z.; Zhou, N.; Zhang, W.; Zhu, X. Ligand-free Cu(0)-mediated controlled radical polymerization of methyl methacrylate at ambient temperature. J. Polym. Sci., Part A: Polym. Chem. 2012, 50, 711–719.CrossRefGoogle Scholar
  40. 40.
    Hornby, B. D.; West, A. G.; Tom, J. C.; Waterson, C.; Harrisson, S. Copper(0)-mediated living radical polymerization of methyl methacrylate in a non-polar solvent. Macromol. Rapid Commun. 2010, 31, 1276–1280.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringTianjin UniversityTianjinChina
  2. 2.Charles Institute of Dermatology, School of MedicineUniversity College DublinDublin 4Ireland
  3. 3.School of Mechanical and Materials EngineeringUniversity College DublinDublin 4Ireland

Personalised recommendations