Skip to main content
Log in

Ethylene-bridged Indenyl-fluorenyl Metallocene Complexes for Efficient Preparation of Allyl-terminated Propylene Oligomers and Polymers via Selective β-Methyl Transfer

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Four C1-symmetric ansa-metallocene complexes, C2H4(Ind)(2,7-tBu2-Flu)ZrCl2 (4), C2H4(3-Bn-Ind)(2,7-tBu2-Flu)ZrCl2 (5), C2H4(3-Bn-Ind)(3,6-tBu2-Flu)ZrCl2 (6), and C2H4(3-Bn-Ind)(2,7-tBu2-Flu)HfCl2 (7), were synthesized and characterized. The structures of complexes 4, 5, and 7 were further determined via X-ray diffraction studies. Upon activation with modified methylaluminoxane (MMAO) or AliBu3/[Ph3C][B(C6F5)4] (TIBA/TrB), most of these complexes showed high efficiency in catalyzing propylene oligomerization/polymerization to afford products dominantly with allyl terminals via selective β-methyl transfer (β-Me transfer). The introduction of 3-benzyl group on the indenyl ring of the complexes was found to be crucial in enabling highly selective β-Me transfer during the polymerization process, leading to selectivities up to 89% obtained by zirconocene complexes 5 and 6, and up to 91% obtained by hafnocene complex 7. Detailed chain-end analysis by 1H-NMR, 13C-NMR, and MALDI-TOF mass spectroscopy revealed that the allyl chain-ends of the polymeric products resulted from a selective β-Me transfer process after two successively primary insertions of the monomer. Further studies concerning the dependence of chain release selectivity as well as the molecular weight of products on monomer concentration suggested that both β-Me transfer (major) and β-hydrogen transfer (β-H transfer) (minor) mediated by 5/MMAO and 6/MMAO systems may mainly operate in a bimolecular pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Resconi, L.; Camurati, I.; Sudmeijer, O. Chain transfer reactions in propylene polymerization with zirconocene catalysts. Top. Catal. 1999, 7, 145–163.

    Article  CAS  Google Scholar 

  2. Resconi, L.; Piemontesi, F.; Franciscono, G.; Abis, L.; Fiorani, T. Olefin polymerization at bis(pentamethylcyclopentadienyl) zirconium and hafnium centers: Chain-transfer mechanisms. J. Am. Chem. Soc. 1992, 114, 1025–1032.

    Article  CAS  Google Scholar 

  3. Resconi, L.; Jones, R. L.; Rheingold, A. L.; Yap, G. P. A. High-molecular-weight atactic polypropylene from metallocene catalysts. 1. Me2Si(9-Flu)2ZrX2 (X = Cl, Me). Organometallics 1996, 15, 998–1005.

    Article  CAS  Google Scholar 

  4. Resconi, L.; Piemontesi, F.; Camurati, I.; Sudmeijer, O.; Nifant’ev, I. E.; Ivchenko, P. V.; Kuz’mina, L. G. Highly regiospecific zirconocene catalysts for the isospecific polymerization of propylene. J. Am. Chem. Soc. 1998, 120, 2308–2321.

    Article  CAS  Google Scholar 

  5. Schöbel, A.; Lanzinger, D.; Rieger, B. Polymerization behavior of C 1-symmetric metallocenes (M = Zr, Hf): From ultrahigh molecular weight elastic polypropylene to useful macromonomers. Organometallics 2013, 32, 427–437.

    Article  CAS  Google Scholar 

  6. Markel, E. Metallocene-based branch-block thermoplastic elastomers. Macromolecules 2000, 33, 8541–8548.

    Article  CAS  Google Scholar 

  7. Weng, W.; Markel, E. J.; Peacock, A. J.; Dekmezian, A. H. Synthesis of long-chain branched propylene polymers via macromonomer incorporation. Macromol. Rapid Commun. 2001, 22, 1488–1492.

    Article  CAS  Google Scholar 

  8. Ohtaki, H.; Deplace, F.; Vo, G. D.; LaPointe, A. M.; Shimizu, F.; Sugano, T.; Kramer, E. J.; Fredrickson, G. H.; Coates, G. W. Allyl-terminated polypropylene macromonomers: A route to polyolefin elastomers with excellent elastic behavior. Macromolecules 2015, 48, 7489–7494.

    Article  CAS  Google Scholar 

  9. Eshuis, J. Catalytic olefin oligomerization and polymerization with cationic group IV metal complexes [Cp*2MMe(THT)]+[BPh4], M = Ti, Zr and Hf. J. Mol. Catal. 1990, 62, 277–287.

    Article  CAS  Google Scholar 

  10. Weng, W.; Markel, E. J.; Dekmezian, A. H. Synthesis of vinylterminated isotactic poly(propylene). Macromol. Rapid Commun. 2000, 21, 1103–1107.

    Article  CAS  Google Scholar 

  11. Janiak, C.; Lange, K. C. H.; Marquardt, P. Alkyl-substituted cyclopentadienyl- and phospholyl-zirconium/MAO catalysts for propene and 1-hexene oligomerization. J. Mol. Catal. A: Chem. 2002, 180, 43–58.

    Article  CAS  Google Scholar 

  12. Bader, M.; Marquet, N.; Kirillov, E.; Roisnel, T.; Razavi, A.; Lhost, A.; Carpentier, J. F. Old and new C 1-symmetric group 4 metallocenes {(R1R2C)-(R2'R3'R6'R7'-Flu) (3-R3-5-R4-C5H2)}-ZrCl2: From highly isotactic polypropylenes to vinyl endcapped isotactic-enriched oligomers. Organometallics 2012, 31, 8375–8387.

    Article  CAS  Google Scholar 

  13. Suzuki, Y.; Yasumoto, T.; Mashima, K.; Okuda, J. Hafnocene catalysts for selective propylene oligomerization: Efficient synthesis of 4-methyl-1-pentene by ß-methyl transfer. J. Am. Chem. Soc. 2006, 128, 13017–13025.

    Article  CAS  PubMed  Google Scholar 

  14. Watson, P. L.; Roe, D. C. ß-Alkyl transfer in a lanthanide model for chain termination. J. Am. Chem. Soc. 1982, 104, 6471–6473.

    Article  CAS  Google Scholar 

  15. Hajela, S.; Bercaw, J. E. Competitive chain transfer by ß-hydrogen and ß-methyl elimination for a model Ziegler-Natta olefin polymerization system [Me2Si(η5-C5Me4)2]Sc{CH2CH (CH3)2}(PMe3). Organometallics 1994, 13, 1147–1154.

    Article  CAS  Google Scholar 

  16. Wang, Y.; Huang, W.; Ma, H.; Huang, J. Ethylene-bridged C 1-symmetric ansa-(3-R-Indenyl)(fluorenyl) zirconocene complexes for propylene dimerization or polymerization: The effect of R group. Polyhedron 2014, 76, 81–93.

    Article  CAS  Google Scholar 

  17. Huang, W.; Wang, Y.; Ma, H.; Huang, J. Highly selective propylene dimerization catalyzed by C 1-symmetric zirconocene complexes. Appl. Organomet. Chem. 2014, 10, 413–422.

    Article  CAS  Google Scholar 

  18. Aitola, E.; Surakka, M.; Repo, T.; Linnolahti, M.; Lappalainen, K.; Kervinen, K.; Klinga, M.; Pakkanen, T.; Leskelä, M. Polymerization of ethene with zirconocene catalysts: An experimental and quantum chemical study of the influence of para-substituent in benzyl in bis {·5-(1-benzyl)indenyl}zirconium dichlorides. J. Organomet. Chem. 2005, 690, 773–783.

    Article  CAS  Google Scholar 

  19. Rieger, B.; Jany, G.; Fawzi, R.; Steimann, M. Unsymmetric ansa-zirconocene complexes with chiral ethylene bridges: Influence of bridge conformation and monomer concentration on the stereoselectivity of the propene polymerization reaction. Organometallics 1994, 13, 647–653.

    Article  CAS  Google Scholar 

  20. Linnolahti, M.; Pakkanen, T. A.; Leino, R.; Luttikhedde, H. J. G.; Wilén, C. E.; Näsman, J. H. Conformational preferences of racemic ethylene-bridged bis(indenyl)-type zirconocenes: An ab initio Hartree-Fock study. Eur. J. Inorg. Chem. 2001, 2033–2040.

    Google Scholar 

  21. Leino, R.; Luttikhedde, H. J. G.; Lehtonen, A.; Ekholm, P.; Näsman, J. H. Synthesis and characterization of ethylenebridged 1-tert-butyldimethylsiloxy-substituted bis(indenyl) and bis(tetrahydroindenyl)zirconium dichlorides. J. Organomet. Chem. 1998, 558, 181–188.

    Article  CAS  Google Scholar 

  22. Doerrer, L.; Green, M. L. H.; Powell, A. K.; Häußinger, D.; Saßmannshausen, J. Evidence for cationic group 4 zirconocene complexes with intramolecular phenyl coordination. J. Chem. Soc. Dalton Trans. 1999, 2111–2118.

    Google Scholar 

  23. Bochmann, M.; Green, M. L. H.; Powell, A. K.; Saßmannshausen, J.; Triller, M. U.; Wocadlo, S. Cationic zirconocene complexes with benzyl and Si(SiMe3)3 substituted cyclopentadienyl ligands. J. Chem. Soc. Dalton Trans. 1999, 43–50.

    Google Scholar 

  24. Licht, A. I.; Schneider, K. J.; Alt, H. G. CH-Aktivierungsreaktionen an unverbrückten und verbrückten zirconocenkomplexen zur darstellung von metallacyclen und deren verwendung in der katalytischen ethylenpolymerisation. J. Organomet. Chem. 2003, 688, 254–272.

    Article  CAS  Google Scholar 

  25. Kirillov, E.; Marquet, N.; Razavi, A.; Belia, V.; Hampel, F.; Roisnel, T.; Gladysz, J. A.; Carpentier, J. F. New C 1-symmetric Ph2C-bridged multisubstituted ansa-zirconocenes for highly isospecific propylene polymerization: Synthetic approach via activated fulvenes. Organometallic 2010, 29, 5073–5082.

    Article  CAS  Google Scholar 

  26. Deckers, P.; Hessen, B.; Teuben, J. Switching a catalyst system from ethene polymerization to ethene trimerization with a hemilabile ancillary ligand. Angew. Chem. Int. Ed. 2001, 40, 2516–2519.

    Article  CAS  Google Scholar 

  27. Deckers, P. Catalytic trimerization of ethene with highly active cyclopentadienyl-arene titanium catalysts. Organometallics 2002, 21, 5122–5135.

    Article  CAS  Google Scholar 

  28. Zhang, Y.; Wang, C.; Wu, T.; Ma, H.; Huang, J. Highly selective ethylene trimerization catalyzed by half-sandwich indenyl titanium complexes with pendant arene groups and MAO. J. Mol. Catal. A: Chem. 2013, 373, 85–95.

    Article  CAS  Google Scholar 

  29. Razavi, A. Preparation and crystal structures of the complexes (η5-C5H3TMS-CMe25-C13H8)MCl2 and [3,6-ditButC13H6-SiMe2-NtBu]MCl2 (M = Hf, Zr or Ti): Mechanistic aspects of the catalytic formation of a isotactic-syndiotactic stereoblocktype polypropylene. J. Organomet. Chem. 2001, 621, 267–276, and references therein.

    Article  CAS  Google Scholar 

  30. Yang, M.; Li, Q.; Li, X. L.; Hu, B. W.; Dong, X. F.; Qu, J. Y.; Liu, B. Y.; Wang, X.; Hao, X. Y. Tandem catalysis of one metallocene catalyst combined with two different cocatalysts for preparing branched polyethylene. Chinese J. Polym. Sci. 2016, 34, 298–306.

    Article  CAS  Google Scholar 

  31. Busico, V.; Cipullo, R.; Pellecchia, R.; Talarico, G.; Razavi, A. Hafnocenes and MAO: Beware of trimethylaluminum. Macromolecules 2009, 42, 1789–1791.

    Article  CAS  Google Scholar 

  32. Cobzaru, C.; Hild, S.; Boger, A.; Troll, C.; Rieger, B. “Dualside” catalysts for high and ultrahigh molecular weight homopolypropylene elastomers and plastomers. Coord. Chem. Rev. 2006, 250, 189–211.

    Article  CAS  Google Scholar 

  33. Resconi, L.; Piemontesi, F.; Camurati, I.; Balboni, D.; Sironi, A.; Moret, M.; Rychlicki, H.; Zeigler, R. Diastereoselective synthesis, molecular structure, and solution dynamics of meso-and rac-[ethylenebis(4,7-dimethyl-η5-1-indenyl)]zirconium dichloride isomers and chain transfer reactions in propene polymerization with the rac isomer. Organometallics 1996, 15, 5046–5059.

    Article  CAS  Google Scholar 

  34. Busico, V.; Brita, D.; Caporaso, L.; Cipullo, R.; Vacatello, M. Interfering effects of growing chain epimerization on metallocene-catalyzed isotactic propene polymerization. Macromolecules 1997, 30, 3971–3977.

    Article  CAS  Google Scholar 

  35. Miller, S. A.; Bercaw, J. E. Mechanism of isotactic polypropylene formation with C 1-symmetric metallocene catalysts. Organometallics 2006, 25, 3576–3592.

    Article  CAS  Google Scholar 

  36. Kleinschmidt, R.; Reffke, M.; Fink, G. Investigation of the microstructure of poly(propylene) in dependence of the polymerization temperature for the systems iPr[3-RCpFlu]ZrCl2/MAO, with R = H, Me, Et, iPr, tBu, and iPr[IndFlu]ZrCl2/MAO. Macromol. Rapid Commum. 1999, 20, 284–288.

    Article  CAS  Google Scholar 

  37. Yang, P.; Baird, M. C. Mechanistic study of ß-methyl and ß-hydrogen elimination in the zirconocene compounds Cp'2ZrR(µ-CH3)B(C6F5)3 (Cp' = Cp, Cp*; R = CH2CMe3, CH2CHMe2). Organometallics 2005, 24, 6005–6012.

    Article  CAS  Google Scholar 

  38. Stehling, U.; Diebold, J.; Kirsten, R.; Röll, W.; Brintzinger, H. H.; Jüngling, S.; Mülhaupt, R.; Langhauser, F. ansa-Zirconocene polymerization catalysts with anelated ring ligands—effects on catalytic activity and polymer chain length. Organometallics 1994, 13, 964–970.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 21274041), the Key Project of Chinese Ministry of Education (No. 109064), and the Fundamental Research Funds for the Central Universities (No. WK1214048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyan Ma.

Electronic supplementary material

10118_2019_2224_MOESM1_ESM.pdf

Ethylene-bridged Indenyl-fluorenyl Metallocene Complexes for Efficient Preparation of Allyl-terminated Propylene Oligomers and Polymers via Selective β-Methyl Transfer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Zhang, B. & Ma, H. Ethylene-bridged Indenyl-fluorenyl Metallocene Complexes for Efficient Preparation of Allyl-terminated Propylene Oligomers and Polymers via Selective β-Methyl Transfer. Chin J Polym Sci 37, 578–590 (2019). https://doi.org/10.1007/s10118-019-2224-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-019-2224-1

Keywords

Navigation