Skip to main content
Log in

Formation of Poly(ε-caprolactone) Networks via Supramolecular Hydrogen Bonding Interactions

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

In this contribution, we reported a novel approach to crosslink poly(ε-caprolactone) (PCL) via supramolecular hydrogen bonding interactions. First, a series of octa-armed poly(ε-caprolactone) stars with polyhedral oligomeric silsesquioxane (POSS) cores were synthesized via the ring-opening polymerizations. Thereafter, the arm ends of organic-inorganic star-shaped PCLs were reacted with 2-(6-isocyanatohexylaminocarbonylamino)-6-methyl-4[1H]-pyrimidinone to obtain 2-ureido-4[1H]-pyrimidone (UPy)-terminated PCL stars. Notably, the UPy-terminated PCL stars were physically crosslinked, which was evidenced by means of dynamic mechanical thermal analysis (DMTA) and rheological analysis. Owing to the formation of the physically-crosslinked networks, the organic-inorganic PCL stars displayed significant shape memory properties with about 100% of shape recovery, which was in marked contrast to the PCL stars without UPy termini.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lendlein, A.; Kelch, S. Shape-memory polymers. Ange w. Chem. Int. Ed. 2002, 41, 2034–2057.

    Article  CAS  Google Scholar 

  2. Hu, J.; Zhu, Y.; Huang, H.; Lu, J. Recent advances in shape-memory polymers: Structure, mechanism, functionality, modeling and applications. Prog. Polym. Sci. 2012, 37, 1720–1763.

    Article  CAS  Google Scholar 

  3. Zhao, Q.; Qi, H. J.; Xie, T. Recent progress in shape memory polymer: New behavior, enabling materials, and mechanistic understanding. Prog. Polym. Sci. 2015, 49, 79–120.

    Article  CAS  Google Scholar 

  4. Xie, T. Tunable polymer multi-shape memory effect. Nature 2010, 464, 267.

    Article  CAS  PubMed  Google Scholar 

  5. Liu, C.; Qin, H.; Mather, P. Review of progress in shape-memory polymers. J. Mater. Chem. 2007,17, 1543–1558.

    Google Scholar 

  6. Zotzmann, J.; Behl, M.; Hofmann, D.; Lendlein, A. Reversible triple-shape effect of polymer networks containing polypentadecalactone- and poly(e-caprolactone)-segments. Adv. Mater. 2010, T2, 3424–3429.

    Google Scholar 

  7. Mather, P. T.; Luo, X.; Rousseau, I. A. Shape memory polymer research. Annu. Rev. Mater. Res. 2009, 39, 445–471.

    Article  CAS  Google Scholar 

  8. Metzger, M. F.; Wilson, T. S.; Schumann, D.; Matthews, D. L.; Maitland, D. J. Mechanical properties of mechanical actuator for treating ischemic stroke. Biomed. Microdevices 2002, 4, 89–96.

    Article  Google Scholar 

  9. Small IV, W.; Wilson, T. S.; Benett, W. J.; Loge, J. M.; Maitland, D. J. Laser-activated shape memory polymer intravascular thrombectomy device. Opt. Express 2005, 13, 8204–8213.

    Article  PubMed  Google Scholar 

  10. Metcalfe, A.; Desfaits, A. C.; Salazkin, I.; Yahia, L. H.; Sokolowski, W. M.; Raymond, J. Cold hibernated elastic memory foams for endovascular interventions. Biomaterials 2003, 24, 491–497.

    Article  CAS  PubMed  Google Scholar 

  11. Yu, X.; Zhou, S.; Zheng, X.; Xiao, Y.; Guo, T. Influence of in vitro degradation of a biodegradable nanocomposite on its shape memory effect. J. Phys. Chem. C 2009, 113, 17630–17635.

    Article  CAS  Google Scholar 

  12. Huang, W. M.; Song, C.; Fu, Y. Q.; Wang, C. C.; Zhao, Y.; Purnawali, H.; Lu, H.; Tang, C.; Ding, Z.; Zhang, J. L. Shaping tissue with shape memory materials. Adv. Drug. Deliver. Rev. 2013, 65, 515–535.

    Article  CAS  Google Scholar 

  13. Kim, B. K.; Lee, S. Y.; Xu, M. Polyurethanes having shape memory effects. Polymer 1996, 37, 5781–5793.

    Article  CAS  Google Scholar 

  14. Schuh, C.; Schuh, K.; Lechmann, M. C.; Garnier, L.; Kraft, A. Shape-memory properties of segmented polymers containing aramid hard segments and polycaprolactone soft segments. Polymers 2010, 2, 71–85.

    Article  CAS  Google Scholar 

  15. Ping, P.; Wang, W.; Chen, X.; Jing, X. Poly(e-caprolactone) polyurethane and its shape-memory property. Biomacromolecules 2005, 6, 587–592.

    Article  CAS  PubMed  Google Scholar 

  16. Yoshii, F.; Darwis, D.; Mitomo, H.; Makuuchi, K. Crosslinking of poly(e-caprolactone) by radiation technique and its biodegradability. Radiat. Phys. Chem. 2000, 57, 417–420.

    Article  CAS  Google Scholar 

  17. Wang, S.; Yaszemski, M. J.; Gruetzmacher, J. A.; Lu, L. Photocrosslinked poly(e-caprolactone fumarate) networks: Roles of crystallinity and crosslinking density in determining mechanical properties. Pofymer 2008, 49, 5692–5699.

    CAS  Google Scholar 

  18. Garle, A.; Kong, S.; Ojha, U.; Budhlall, B. M. Thermoresponsive semicrystalline poly(e-caprolactone) networks: Exploiting cross-linking with cinnamoyl moieties to design polymers with tunable shape memory. ACS Appl. Mater. Interfaces 2012, 4, 645–657.

    Article  CAS  PubMed  Google Scholar 

  19. Deshmukh, P.; Yoon, H.; Cho, S.; Yoon, S. Y.; Zore, O. V.; Kim, T.; Chung, I.; Ahn, S. K.; Kasi, R. M. Impact of poly(ecaprolactone) architecture on the thermomechanical and shape memory properties. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 3424–3433.

    Article  CAS  Google Scholar 

  20. Alvarado-Tenorio, B.; Romo-Uribe, A.; Mather, P. T. Nanoscale order and crystallization in POSS-PCL shape memory molecular networks. Macromolecules 2015, 48, 5770–5779.

    Article  CAS  Google Scholar 

  21. Baker, R. M.; Henderson, J. H.; Mather, P. T. Shape memory poly(e-caprolactone)-co-poly(ethylene glycol) foams with body temperature triggering and two-way actuation. J. Mater. Chem. B 2013, 1, 4916–4920.

    Article  CAS  Google Scholar 

  22. Zhao, Q.; Zou, W.; Luo, Y.; Xie, T. Shape memory polymer network with thermally distinct elasticity and plasticity. Sci. Adv. 2016, 2, e1501297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ozturk, G.; Long, T. E. Michael addition for crosslinking of poly(caprolactone)s. J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 5437–5447.

    Article  CAS  Google Scholar 

  24. Liu, Y.; Li, Y.; Yang, G.; Zheng, X.; Zhou, S. Multi-stimulusresponsive shape-memory polymer nanocomposite network cross-linked by cellulose nanocrystals. ACS Appl. Mater. Interfaces 2015, 7, 4118–4126.

    Article  CAS  PubMed  Google Scholar 

  25. Mya, K. Y.; Gose, H. B.; Pretsch, T.; Bothe, M.; He, C. Starshaped POSS-polycaprolactone polyurethanes and their shape memory performance. J. Mater. Chem. 2011, 21, 4827–4836.

    Article  CAS  Google Scholar 

  26. Zhang, Y.; Wang, Q.; Wang, C.; Wang, T. High-strain shape memory polymer networks crosslinked by SiO2. J. Mater. Chem. 2011, 21, 9073–9078.

    Article  CAS  Google Scholar 

  27. Defize, T.; Riva, R.; Raquez, J. M.; Dubois, P.; Jérôme, C.; Alexandre, M. Thermoreversibly Crosslinked poly(e-caprolactone) as recyclable shape-memory polymer network. Macromol. Rapid. Comm. 2011, 32, 1264–1269.

    Article  CAS  Google Scholar 

  28. Defize, T.; Thomassin, J. M.; Alexandre, M.; Gilbert, B.; Riva, R.; Jérôme, C. Comprehensive study of the thermo-reversibility of Diels-Alder based PCL polymer networks. Polymer 2016, 84, 234–242.

    Article  CAS  Google Scholar 

  29. Lee, K. M.; Knight, P. T.; Chung, T.; Mather, P. T. Polycaprolactone-POSS chemical/physical double networks. Macromolecules 2008, 41, 4730–4738.

    Article  CAS  Google Scholar 

  30. Alvarado-Tenorio, B.; Romo-Uribe, A.; Mather, P. T. Microstructure and phase behavior of POSS/PCL shape memory nanocomposites. Macromolecules 2011, 44, 5682–5692.

    Article  CAS  Google Scholar 

  31. Lendlein, A.; Langer, R. Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 2002, 296,1673–1676.

    Article  PubMed  Google Scholar 

  32. Langer, R.; Tirrell, D. A. Designing materials for biology and medicine. Nature 2004, 428, 487–492.

    Article  CAS  PubMed  Google Scholar 

  33. Jing, X.; Mi, H. Y.; Huang, H. X.; Turng, L. S. Shape memory thermoplastic polyurethane (TPU)/poly(e-caprolactone) (PCL) blends as self-knotting sutures. J. Mech. Behav. Biomed. Mater. 2016, 64, 94–103.

    Article  CAS  PubMed  Google Scholar 

  34. Huang, W. M.; Yang, B.; Fu, Y. Q. In polyurethane shape memory polymers. CRC Press: 2011.

    Book  Google Scholar 

  35. Beijer, F. H.; Sijbesma, R. P.; Kooijman, H.; Spek, A. L.; Meijer, E. W. Strong dimerization of ureidopyrimidones via quadruple hydrogen bonding. J. Am. Chem. Soc. 1998, 120, 6761–6769.

    Article  CAS  Google Scholar 

  36. Söntjens, S. H.; Sijbesma, R. P.; van Genderen, M. H.; Meijer, E. W. Stability and lifetime of quadruply hydrogen bonded 2-ureido-4[1H]-pyrimidinone dimers. J. Am. Chem. Soc. 2000, 122, 7487–7493.

    Article  CAS  Google Scholar 

  37. Kushner, A. M.; Gabuchian, V.; Johnson, E. G.; Guan, Z. Biomimetic design of reversibly unfolding cross-linker to enhance mechanical properties of 3D network polymers. J. Am. Chem. Soc. 2007,129, 14110–14111.

    Google Scholar 

  38. Zhu, Y.; Hu, J.; Liu, Y. Shape memory effect of thermoplastic segmented polyurethanes with self-complementary quadruple hydrogen bonding in soft segments. Eur. Phys. J. E 2009, 28, 3–10.

    Article  CAS  PubMed  Google Scholar 

  39. Wang, L.; Zhang, C.; Cong, H.; Li, L.; Zheng, S.; Li, X.; Wang, J. Formation of nanophases in epoxy thermosets containing amphiphilic block copolymers with linear and star-like topologies. J. Phys. Chem. B 2013,117, 8256–8268.

    Google Scholar 

  40. Folmer, B. J.; Sijbesma, R.; Versteegen, R.; Van der Rijt, J.; Meijer, E. Supramolecular polymer materials: Chain extension of telechelic polymers using a reactive hydrogen-bonding synthon. Adv. Mater. 2000, 12, 874–878.

    Article  CAS  Google Scholar 

  41. Dankers, P. Y.; Adams, P.; Löwik, D. W.; van Meijer, E. Convenient solid-phase synthesis of ureidopyrimidinone modified peptides. Eur. J. Org. Chem. 2007, 22, 3622–3632.

    Article  CAS  Google Scholar 

  42. Winter, H. H.; Chambon, F. Analysis of linear viscoelasticity of a crosslinking polymer at the gel point. J. Rheol. 1986, 30, 367–382.

    Article  CAS  Google Scholar 

  43. Chambon, F.; Winter, H. H. Linear viscoelasticity at the gel point of a crosslinking PDMS with imbalanced stoichiometry. J. Rheol. 1987, 31, 683–97.

    Article  CAS  Google Scholar 

  44. Winter, H. H.; Mours, M. Rheology of polymers near their liquid-solid transitions. Adv. Polym. Sci. 1997, 134, 165–234.

    Article  CAS  Google Scholar 

  45. Soenen, H.; Berghmans, H.; Winter, H. H.; Overbergh, N. Ordering and structure formation in triblock copolymer solutions. Part II. Small angle X-ray scattering and calorimetric observations. Polymer 1997, 38, 5653–5660.

    CAS  Google Scholar 

  46. Lin, Y. G.; Mallin, D. T.; Chien, J. C. W.; Winter, H. H. Dynamical mechanical measurement of crystallization-induced gelation in thermoplastic elastomeric poly(propylene). Macromolecules 1991, 24, 850–854.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51133003, 21274091, and 21774078).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sixun Zheng.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, S., Chang, P., Zhao, B. et al. Formation of Poly(ε-caprolactone) Networks via Supramolecular Hydrogen Bonding Interactions. Chin J Polym Sci 37, 197–207 (2019). https://doi.org/10.1007/s10118-019-2199-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-019-2199-y

Keywords

Navigation