Skip to main content
Log in

Soluble Two-dimensional Supramolecular Organic Frameworks (SOFs): An Emerging Class of 2D Supramolecular Polymers with Internal Long-range Orders

  • Review
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) materials have been demonstrated to exhibit unique properties originating from its 2D nature. In recent years, the construction of 2D materials has become a topic of great interest. This article summarizes the recent advance of 2D supramolecular organic frameworks (SOFs) which are homogeneously constructed in solution phase through self-assembly of rationally designed building blocks. These 2D SOFs are soluble and still maintain stable network structures in solutions, which exhibit uniqueness not only in structures but also in properties. In this concise review, the SOFs-related background is briefly introduced firstly, followed by outlining the research progress of soluble 2D SOFs from the perspective of monomer design, assembly, and structural characterization. The article ends with a personal outlook on the future development of this new class of supramolecular polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pedersen, C. J. Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc. 1967, 89, 7017–7036.

    Article  CAS  Google Scholar 

  2. Lehn J. M. in Supramolecular Chemistry: Concepts and Perspectives. Wiley VCH, Weinheim, 2006.

    Google Scholar 

  3. Fouquuey, C.; Lehn, J. M.; Levelut, A. M. Molecular recognition directed self–assembly of supramolecular liquid crystalline polymers from complementary chiral components. Adv. Mater. 1990, 2, 254–257.

    Article  Google Scholar 

  4. Aida, T.; Meijer, E. W., Stupp, S. I. Functional supramolecular polymers. Science 2012, 335, 813–817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yang, L.; Tan, X.; Wang, Z.; Zhang, X. Supramolecular polymers: Historical development, preparation, characterization, and functions. Chem. Rev. 2015,115, 7196–7293.

    Google Scholar 

  6. Qu, D. H.; Wang, Q. C.; Zhang, Q. W., Ma, X., Tian, H. Photoresponsive host–guest functional systems. Chem. Rev. 2015, 115, 7543–7588.

    Article  CAS  PubMed  Google Scholar 

  7. Guo, D. S.; Liu, Y. Calixarene–based supramolecular polymerization in solution. Chem. Soc. Rev. 2012, 41, 5907–5921.

    Article  CAS  PubMed  Google Scholar 

  8. Xu, J. F.; Zhang, X. Study on supramolecular polymers in china: An overview and outlook. Acta Polymerica Sinica (in Chinese) 2017, 37–49.

    Google Scholar 

  9. Wei, P.; Yan, X.; Huang, F. Supramolecular polymers constructed by orthogonal self–assembly based on host–guest and metal–ligand interaction. Chem. Soc. Rev. 2015, 44, 815–832.

    Article  CAS  PubMed  Google Scholar 

  10. Harada A. in Supramolecular Polymers Chemistry. Wiley VCH, Weinheim, 2012.

    Google Scholar 

  11. Fan, Y.; Lin, F.; Xu, X. N.; Xu, J. Q.; Zhao, X. Construction of a rod–coil supramolecular copolymer through CB[8]–encapsulation–enhanced donor–acceptor interaction. Acta Polymerica Sinica (in Chinese) 2017, 80–85.

    Google Scholar 

  12. Yi, Z. J.; Wu, Z. Q.; Lin, F.; Qi, Q. Y.; Xu, X. N.; Zhao, X. A supramolecular bottlebrush polymer assembled on the basis of cucurbit[8]uril–encapsulation–enhanced donor–acceptor interaction. Chinese Chem. Lett. 2017, 28, 1167–1171.

    Article  CAS  Google Scholar 

  13. Chen, S. G.; Yu, Y.; Zhao, X.; Ma, Y.; Jiang, X. K.; Li, Z. T. Highly stable chiral (A)6–B supramolecular copolymers: A multivalency–based self–assembly process. J. Am. Chem. Soc. 2011, 133,11124–11127.

    Article  CAS  PubMed  Google Scholar 

  14. Zhou, C.; Tian, J.; Wang, J. L.; Zhang, D. W.; Zhao, X.; Liu, Y.; Li, Z. T. A three–dimensional cross–linking supramolecular polymer stabilized by the cooperative dimerization of the viologen radical cation. Polym. Chem. 2014, 5, 341–345.

    Article  CAS  Google Scholar 

  15. Ji, X. F.; Wang, P.; Wang, H.; Huang, F. A fluorescent supramolecular crosslinked polymer gel formed by crown ether based host–guest interactions and aggregation induced emission. Chinese J. Polym. Sci. 2015, 33, 890–898.

    Article  CAS  Google Scholar 

  16. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. E.; Grigorieva, I. V.; Firsov, A. A. Electric field in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  CAS  PubMed  Google Scholar 

  17. Stock, N.; Biswas, S. Synthesis of metal–organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites. Chem. Rev. 2012, 112, 933–969.

    Article  CAS  PubMed  Google Scholar 

  18. Zhou, H. C.; Long, J. R.; Yaghi, O. M. Introduction to metalorganic frameworks. Chem. Rev. 2012, 112, 673–674.

    Article  CAS  PubMed  Google Scholar 

  19. Ding, S. Y.; Wang, W. Covalent organic frameworks (COFs): From design to applications. Chem. Soc. Rev. 2013, 42, 548–568.

    Article  CAS  PubMed  Google Scholar 

  20. Waller, P. J.; Gandara, F.; Yaghi, O. M. Chemistry of covalent organic frameworks. Acc. Chem. Res. 2015, 48, 3053–3063.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang, K. D.; Tian, J.; Hanifi, D.; Zhang, Y.; Sue, A. C.; Zhou, T. Y.; Zhang, L.; Zhao, X.; Liu, Y.; Li, Z. T. Toward a singlelayer two–dimensional honeycomb supramolecular organic framework in water. J. Am. Chem. Soc. 2013, 135, 17913–17918.

    Article  CAS  PubMed  Google Scholar 

  22. Wang, H.; Zhang, D. W.; Zhao, X.; Li, Z. T. Supramolecular organic frameworks (SOFs): Water–phase periodic porous selfassembled architectures. Acta Chimica Sinica (in Chinese) 2015, 73, 471–479.

    Article  CAS  Google Scholar 

  23. Tian, J.; Chen, L.; Zhang, D. W.; Liu, Y.; Li, Z. T. Supramolecular organic frameworks: Engineering periodicity in water through host–guest chemistry. Chem. Commun. 2016, 52, 6351–6362.

    Article  CAS  Google Scholar 

  24. Wang, H.; Zhang, D. W.; Li, Z. T. Supramolecular organic frameworks: porous periodic supramolecular polymers. Acta Polymerica Sinica (in Chinese) 2017, 19–26.

    Google Scholar 

  25. Zhang, Z. J.; Zhang, H. Y.; Chen, L.; Liu, Y. Interconversion between [5]pseudorotaxane and [3]pseudorotaxane by pasting/detaching two axle molecule. J. Org. Chem. 2011, 76, 8270–8276.

    Article  CAS  PubMed  Google Scholar 

  26. Jeon, W. S.; Kim, H. J.; Lee, C.; Kim, K. Control of the stoichiometry in host–guest complexation by redox chemistry of guests: Inclusion of methylviologen in cucurbit[8]uril. Chem. Commun. 2002, 1828–1829.

    Google Scholar 

  27. Zhang, L.; Zhou, T. Y.; Tian, J.; Wang, H.; Zhang, D. W.; Zhao, X.; Liu, Y.; Li, Z. T. A two–dimensional single–layer supramolecular organic framework that is driven by viologen radical cation dimerization and further promoted by cucurbit[8]uril. Polym. Chem. 2014, 5, 4715–4721.

    Article  CAS  Google Scholar 

  28. Zhang, L.; Jia, Y.; Wang, H.; Zhang, D. W.; Zhang, Q.; Liu, Y.; Li, Z. T. pH–Responsive single–layer honeycomb supramolecular organic frameworks that exhibit antimicrobial activity. Polym. Chem. 2016, 7, 1861–1865.

    Article  CAS  Google Scholar 

  29. Pfeffermann, M.; Dong, R.; Graf, R.; Zajaczkowshi, W.; Gorelik, T.; Pisula, W.; Barita, A.; Müllen, K.; Feng, X. Free–standing monolayer two–dimensional supramolecular organic framework with good internal order. J. Am. Chem. Soc. 2015, 137, 14525–14532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhou, T. Y.; Qi, Q. Y.; Zhao, Q. L.; Fu, J.; Liu, Y.; Ma, Z.; Zhao, X. Highly thermally stable hydrogels derived from monolayered two–dimensional supramolecular polymers. Polym. Chem. 2015, 6, 3018–3023.

    Article  CAS  Google Scholar 

  31. Zhang, Y.; Zhou, T. Y.; Zhang, K. D.; Dai, J. L.; Zhu, Y. Y.; Zhao, X. Encapsulation enhanced dimerization of a series of 4–aryl–A–methylpyridinium derivatives in water: New building blocks for self–assembly in aqueous media. Chem. Asian J. 2014, 9, 1530–1534.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang, Y.; Zhan, T. G.; Zhou, T. Y.; Qi, Q. Y.; Xu, X. N.; Zhao, X. Fluorescence enhancement through the formation of a single–layer two–dimensional supramolecular organic framework and its application in highly selective recognition of picric acid. Chem. Commun. 2016, 52, 7588–7591.

    Article  CAS  Google Scholar 

  33. Zhang, S.; Yan, J. M.; Qin, A. J.; Sun, J. Z.; Tang, B. Z. The specific detection of Cu(II) using an AIE–active alanine ester. Chinese Chem. Lett. 2013, 24, 668–672.

    Article  CAS  Google Scholar 

  34. Lee, H. J.; Kim, H. J.; Lee, E. C.; Kim, J.; Park, S. Y. Highly luminescent and water–soluble two–dimensional supramolecular organic framework: All–organic photosensitizer template for visible–light–driven hydrogen evolution from water. Chem. Asian J. 2018, 13, 390–394.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang, X.; Nie, C. B.; Zhou, T. Y.; Qi, Q. Y.; Fu, J.; Wang, X. Z.; Dai, L.; Chen, Y.; Zhao, X. The construction of single–layer two–dimensional supramolecular organic frameworks in water through the self–assembly of rigid vertexes and flexible edges. Polym. Chem. 2015, 6,1923–1927.

    Google Scholar 

  36. Xu, S. Q.; Zhang, X.; Nie, C. B.; Pang, Z. F.; Xu, X. N.; Zhao, X. The construction of a two–dimensional supramolecular organic framework with parallelogram pores and stepwise fluorescence enhancement. Chem. Commun. 2015, 51, 16417–16420.

    Article  CAS  Google Scholar 

  37. Chen, X. M.; Zhang, Y. M.; Liu, Y. Adsorption of anionic dyes from water by thermostable supramolecular hydrogel. Supramol. Chem. 2016, 28, 817–824.

    Article  CAS  Google Scholar 

  38. Li, Y. W.; Dong, Y. H.; Miao, X. R.; Ren, Y. L.; Zhang, B. L.; Wang, P. P.; Yu, Y.; Li, B.; Isaacs, L.; Cao, L. P. Shape–controllable and fluorescent supramolecular organic frameworks through aqueous host–guest complexation. Ange w. Chem. Int. Ed. 2018, 57, 729–733.

    Article  CAS  Google Scholar 

  39. Yue, L.; Wang, S.; Zhou, D.; Zhang, H.; Li, B.; Wu, L. X. Flexible single–layer ionic organic–inorganic frameworks towards precise nano–size separation. Nat. Commun. 2016, 7, 10742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhou, T. Y.; Xu, S. Q.; Wen, Q.; Pang, Z. F.; Zhao, X. Onestep construction of two different kinds of pores in a 2D covalent organic framework. J. Am. Chem. Soc. 2014, 136, 15885–15888.

    Article  CAS  PubMed  Google Scholar 

  41. Pang, Z. F.; Xu, S. Q.; Zhou, T. Y.; Liang, R. R.; Zhan, T. G.; Zhao, X. Construction of covalent organic frameworks bearing three different kinds of pores through the heterostructural mixed linker strategy. J. Am. Chem. Soc. 2016, 138, 4710–4713.

    Article  CAS  PubMed  Google Scholar 

  42. Qian, C.; Qi, Q. Y.; Jiang, G. F.; Cui, F. Z.; Tian, Y.; Zhao, X. Toward covalent organic frameworks bearing three different kinds of pores: the strategy for construction and COF–to–COF transformation via heterogeneous linker exchange. J. Am. Chem. Soc. 2017, 139, 6736–6743.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21472225, 21725404) and the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDAB20000000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, SY., Zhao, X. Soluble Two-dimensional Supramolecular Organic Frameworks (SOFs): An Emerging Class of 2D Supramolecular Polymers with Internal Long-range Orders. Chin J Polym Sci 37, 1–10 (2019). https://doi.org/10.1007/s10118-019-2189-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-019-2189-0

Keywords

Navigation