Skip to main content

Advertisement

Log in

Amorphous and Crystallizable Thermoplastic Polyureas Synthesized through a One-pot Non-isocyanate Route

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

A simple one-pot non-isocyanate route for synthesizing thermoplastic polyureas is presented. In situ urethanization was conducted from the ring-opening reaction of ethylene carbonate with poly(propylene glycol) bis(2-aminopropyl ether) and hexanediamine, m-xylylenediamine, or diethylene glycol bis(3-aminopropyl) ether at 100 °C for 6 h under normal pressure. Melt transurethane polycondensation was successively conducted at 170 °C under a reduced pressure of 399 Pa for different time periods. A series of nonisocyanate thermoplastic polyureas (NI-TPUreas) were prepared. The NI-TPUreas were characterized by gel permeation chromatography, FTIR, 1H-NMR, differential scanning calorimetry, thermogravimetric analysis, wide-angle X-ray diffraction, atomic force microscopy, and tensile test. NI-TPUreas exhibited Mn of up to 1.67 × 104 g/mol, initial decomposition temperature over 290 °C, and tensile strength of up to 32 MPa. Several crystallizable NI-TPUreas exhibited Tm exceeding 98 °C. NI-TPUreas with good thermal and mechanical properties were prepared through a green and simple one-pot non-isocyanate route.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Delebecq, E.; Pascault, J. P.; Boutevin, B.; Ganachaud, F. On the versatility of urethane/urea bonds: reversibility, blocked isocyanate, and non-isocyanate polyurethane. Chem. Rev. 2013, 113, 80–118.

    Article  CAS  PubMed  Google Scholar 

  2. Ma, Z. W.; Hong, Y.; Nelson, D. M.; Pichamuthu, J. E.; Leeson, C. E.; Wagner, W. R. Biodegradable polyurethane ureas with variable polyester or polycarbonate soft segments: effects of crystallinity, molecular weight, and composition on mechanical properties. Biomacromolecules. 2011, 12, 3265–3274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ruan, C. S.; Hu, N.; Hu, Y.; Jiang, L. X.; Cai, Q. Q.; Wang, H. Y.; Pan, H. B.; Lu, W. W.; Wang, Y. L. Piperazine-based polyurethane-ureas with controllable degradation as potential bone scaffolds. Polymer. 2014, 55, 1020–1027.

    Article  CAS  Google Scholar 

  4. Kim, E. Y.; Lee, J. H.; Lee, D. J.; Lee, Y. H.; Lee, J. H.; Kim, H. D. Synthesis and properties of highly hydrophilic waterborne polyurethane-ureas containing various hardener content for waterproof breathable fabrics. J. Appl. Polym. Sci. 2013, 129, 1745–1751.

    Article  CAS  Google Scholar 

  5. Oprea, S.; Gradinariu, P.; Joga, A.; Oprea, V. Synthesis, structure and fungal resistance of sulfadiazine-based polyurethane ureas. Polym. Degrad. Stab. 2013, 98, 1481–1488.

    Article  CAS  Google Scholar 

  6. Tang, D. L.; Noordover, B. A. J.; Sablong, R. J.; Koning, C. E. Thermoplastic poly(urethane urea)s from novel, bio-based amorphous polyester diols. Macromol. Chem. Phys. 2012, 213, 2541–2549.

    Article  CAS  Google Scholar 

  7. Shirasaka, H.; Inoue, S. I.; Asai, K.; Okamoto, H. Polyurethane urea elastomer having monodisperse poly(oxytetramethylene) as a soft segment with a uniform hard segment. Macromolecules. 2000, 33, 2776–2778.

    Article  CAS  Google Scholar 

  8. Primeaux II, D. J. Polyurea elastomer technology: history, chemistry & basic formulating techniques. Primeaux Associates LLC, hansonco.net. 2004, 1–20.

    Google Scholar 

  9. Mattia, J.; Painter, P. A comparison of hydrogen bonding and order in a polyurethane and poly(urethane-urea) and their blends with poly(ethylene glycol). Macromolecules. 2007, 40, 1546–1554.

    Article  CAS  Google Scholar 

  10. Johnson, J. C.; Wanasekara, N. D.; Korley, L. T. J. Utilizing peptidic ordering in the design of hierarchical polyurethane/ureas. Biomacromolecules. 2012, 13, 1279–1286.

    Article  CAS  PubMed  Google Scholar 

  11. Underhill, R. S.; DiLoreto, S.; DiLoreto, B. Development of polyureas with improved fire resistance. J. Fire Sci. 2012, 31, 211–226.

    Article  CAS  Google Scholar 

  12. Kathalewar, M. S.; Joshi, P. B.; Sabnis, A. S.; Malshe, V. C. Non-isocyanate polyurethanes: from chemistry to applications. RSC Adv. 2013, 3, 4110–4129.

    Article  CAS  Google Scholar 

  13. Tamami, B.; Sohn, S.; Wilkes, G. L. Incorporation of carbon dioxide into soybean oil and subsequent preparation and studies of nonisocyanate polyurethane networks. J. Appl. Polym. Sci. 2004, 92, 883–891.

    Article  CAS  Google Scholar 

  14. Annunziata, L.; Diallo, A. K.; Fouquay, S.; Michaud, G.; Simon, F.; Brusson, J. M.; Carpentier, J. F.; Guillaume, S. M. α,ω-Di(glycerol carbonate) telechelic polyesters and polyolefins as precursors to polyhydroxyurethanes: an isocyanate-free approach. Green Chem. 2014, 16, 1947–1956.

    Article  CAS  Google Scholar 

  15. Bähr, M.; Bitto, A.; Mülhaupt, R. Cyclic limonene dicarbonate as a new monomer for non-isocyanate oligo- and polyurethanes (NIPU) based upon terpenes. Green Chem. 2012, 14, 1447–1454.

    Article  CAS  Google Scholar 

  16. Besse, V.; Auvergne, R.; Carlotti, S.; Boutevin, G.; Otazaghine, B.; Caillol, S.; Pascault, J. P.; Boutevin, B. Synthesis of isosorbide based polyurethanes: an isocyanate free method. React. Funct. Polym. 2013, 73, 588–594.

    Article  CAS  Google Scholar 

  17. Maisonneuve, L.; Lamarzelle, O.; Rix, E.; Grau, E.; Cramail, H. Isocyanate-free routes to polyurethanes and poly(hydroxy urethane)s. Chem. Rev. 2015, 115, 12407–12439.

    Article  CAS  PubMed  Google Scholar 

  18. Deepa, P.; Jayakannan, M. Solvent-free and nonisocyanate melt transurethane reaction for aliphatic polyurethanes and mechanistic aspects. J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 2445–2458.

    Article  CAS  Google Scholar 

  19. Rokicki, G.; Piotrowska, A. A new route to polyurethanes from ethylene carbonate, diamines and diols. Polymer 2002, 43, 2927–2935.

    Article  CAS  Google Scholar 

  20. Ochiai, B.; Utsuno, T. Non-isocyanate synthesis and application of telechelic polyurethanes via polycondensation of diurethanes obtained from ethylene carbonate and diamines. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 525–533.

    Article  CAS  Google Scholar 

  21. Sharma, B.; Ubaghs, L.; Keul, H.; Höcker, H.; Loontjens, T.; van Benthem, R. Synthesis and characterization of alternating poly(amide urethane)s from ε-caprolactone, diamines and diphenyl carbonate. Polymer 2005, 46, 1775–1783.

    Article  CAS  Google Scholar 

  22. Li, C. G.; Li, S. Q.; Zhao, J. B.; Zhang, Z. Y.; Zhang, J. Y.; Yang, W. T. Synthesis and characterization of aliphatic poly(amide urethane)s having different nylon 6 segments through non-isocyanate route. J. Polym. Res. 2014, 21, 498, 1–10.

    Google Scholar 

  23. Tang, D. L.; Mulder, D.; Noordover, B. A. J.; Koning, C. E. Well-defined biobased segmented polyureas synthesis via a TBD-catalyzed isocyanate-free route. Macromol. Rapid Commun. 2011, 32, 1379–1385.

    Article  CAS  Google Scholar 

  24. Li, S. Q.; Sang, Z. H.; Zhao, J. B.; Zhang, Z. Y.; Zhang, J. Y.; Yang, W. T. Crystallizable and tough aliphatic thermoplastic polyureas synthesized through a non-isocyanate route. Ind. Eng. Chem. Res. 2016, 55, 1902–1911.

    Article  CAS  Google Scholar 

  25. Pan, W. C.; Lin, C. H.; Dai, S. A. High performance segmented polyurea by trans-esterification of diphenyl carbonates with aliphatic diamines. J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 2781–2790.

    Article  CAS  Google Scholar 

  26. Pan, W. C.; Liao, K.; Lin, C. H.; Dai, S. A. Solvent-free processes to polyurea elastomers from diamines and diphenyl carbonate. J. Polym. Res. 2015, 22(6), 114.

    Article  CAS  Google Scholar 

  27. Li, S. Q.; Zhao, J. B.; Zhang, Z. Y.; Zhang, J. Y.; Yang, W. T. Aliphatic thermoplastic polyurethane-ureas and polyureas synthesized through a non-isocyanate route. RSC Adv. 2015, 5, 6843–6852.

    Article  CAS  Google Scholar 

  28. Deng, Y.; Li, S. Q.; Zhao, J. B.; Zhang, Z. Y.; Zhang, J. Y.; Yang, W. T. Crystallizable and tough aliphatic thermoplastic poly(ether urethane)s synthesized through a non-isocyanate route. RSC Adv. 2014, 4, 43406–43414.

    Article  CAS  Google Scholar 

  29. Allcock, H. R.; Lampe F. W.; Mark, J. E. “Contemporary Polymer Chemistry”, 3rd ed. Science Press, Beijing, 2003, Chapter 19, p. 600.

    Google Scholar 

  30. Liu, S. W.; Zhang, Y.; Xu, J. R. Synthesis and characterization of polyureas from aniline trimer with TDI, MDI and HDI as pH sensitive materials. Chin. J. Chem. 2011, 29, 1036–1040.

    Article  Google Scholar 

  31. Yin T. Synthesis and characterization of aliphatic polyesteramides mainly composed of alternating diester diamide units from N,N′-bis(2-hydroxyethyl)-oxamide and diacids. Polym. Eng. Sci. 2014, 54, 756–765.

    Article  CAS  Google Scholar 

  32. Li, S. Q.; Zhao, J. B.; Zhang, Z. Y.; Zhang, J. Y.; Yang, W. T. Synthesis and characterization of aliphatic segmented poly(ether amide urethane)s through a non-isocyanate route. RSC Adv. 2014, 4, 23720–23729.

    Article  CAS  Google Scholar 

  33. Deng, Y.; Li, S. Q.; Zhao, J. B.; Zhang, Z. Y.; Zhang, J. Y.; Yang, W. T. Aliphatic thermoplastic poly(ether urethane)s having long PEG sequences synthesized through a nonisocyanate route. Chinese J. Polym. Sci. 2015, 33, 880–889.

    Article  CAS  Google Scholar 

  34. Klinedinsta, D. B.; Yilgör, E.; Yilgör, I.; Beyerc, F. L.; Wilkes, G. L. Structure-property behavior of segmented polyurethaneurea copolymers based on an ethylene-butylene soft segment. Polymer 2005, 46, 10191–10201.

    Article  CAS  Google Scholar 

  35. Zhang, X. L.; Xiao, J. J.; Zhou, H. J.; Chen, X. Q.; Li, Y. T.; Qu, X. W. Synthesis and characterization of damping polyurethane derived from poly(neopentyl glycol propoxylated succinic acid). J. Polym. Res. 2015, 22(6), 108.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 21244006) and Beijing Natural Science Foundation (No. 2182056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Bo Zhao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ban, JL., Li, SQ., Yi, CF. et al. Amorphous and Crystallizable Thermoplastic Polyureas Synthesized through a One-pot Non-isocyanate Route. Chin J Polym Sci 37, 43–51 (2019). https://doi.org/10.1007/s10118-018-2165-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-018-2165-0

Keywords

Navigation