Skip to main content
Log in

Humidity-responsive Bilayer Actuators Comprised of Porous and Nonporous Poly(acrylic acid)/Poly(allylamine hydrochloride) Films

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Bilayer humidity-responsive actuators are generally composed of actuating and supporting layers of different materials with largely different wettability. Such kinds of bilayer actuators suffer from low adhesive force between the two layers during usage. This study demonstrates the preparation of humidity-responsive bilayer actuators that have the same materials in the actuating and supporting layers to avoid the adhesive issue. The bilayer actuators consist of a porous poly(acrylic acid) (PAA)/poly(allylamine hydrochloride) (PAH) layer and a nonporous PAA/PAH layer that are fabricated by exponentially layer-by-layer assembly method. At a high/low relative humidity (RH), the nonporous PAA/PAH layer can efficiently expand/shrink by absorbing/desorbing water while the volume expansion/shrinkage of the porous PAA/PAH layer in an environment with changed humidity is significantly suppressed by the micrometer-sized pores. The largely different expansion/shrinkage of the nonporous and porous PAA/PAH layers when subjected to humidity changes enables rapid and reversible rolling/unrolling motions of the bilayer actuator. The bilayer actuator shows a faster rolling speed and a larger bending curvature when subjected to a larger humidity increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhao, Z. G.; Xu, Y. C.; Fang, R. C.; Liu, M. J. Bioinspired adaptive gel materials with synergistic heterostructures. Chinese J. Polym. Sci. 2018, 26(6), 683–696.

    Article  CAS  Google Scholar 

  2. Uh, K.; Yoon, B.; Lee, C. W.; Kim, J. M. An electrolyte-free conducting polymer actuator that displays electrothermal bending and flapping wing motions under a magnetic field. ACS Appl. Mater. Interfaces 2016, 8(2), 1289–1296.

    Article  CAS  PubMed  Google Scholar 

  3. Chen, N.; Hu, Y.; Zhao, Y.; Qu, L. Progress in controllable preparation and electrochemical applications of graphene/poly(pyrrole) composites. Acta Polymerica Sinica (in Chinese) 2014, 21(6), 752–760.

    Google Scholar 

  4. Zhang, L.; Naumov, P. Light-and humidity-induced motion of an acidochromic film. Angew. Chem. Int. Ed. 2015, 54(30), 8642–8647.

    Article  CAS  Google Scholar 

  5. Sattar, R.; Kausar, A.; Siddiq, M. Thermal, mechanical and electrical studies of novel shape memory polyurethane/ polyaniline blends. Chinese J. Polym. Sci. 2015, 33(9), 1313–1324.

    Article  CAS  Google Scholar 

  6. Liao, J. X.; Huang, J. H.; Wang, T.; Sun, W. W.; Tong, Z. Rapid shape memory and pH-modulated spontaneous actuation of dopamine containing hydrogels. Chinese J. Polym. Sci. 2017, 35(10), 1297–1306.

    Article  CAS  Google Scholar 

  7. Ma, M.; Guo, L.; Anderson, D. G.; Langer, R. Bio-inspired polymer composite actuator and generator driven by water gradients. Science 2013, 339(6116), 186–189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu, J. C.; Shang, Y. Y.; Zhang, D. J.; Xie, Z.; Hu, R. X.; Wang, J. X. Single-material solvent-sensitive fluorescent actuator from carbon dots inverse opals based on gradient dewetting. Chinese J. Polym. Sci. 2017, 35(9), 1043–1050.

    Article  CAS  Google Scholar 

  9. Islam, M. R.; Li, X.; Smyth, K.; Serpe, M. J. Polymer-based muscle expansion and contraction. Angew. Chem. Int. Ed. 2013, 52(39), 10330–10333.

    Article  CAS  Google Scholar 

  10. Chen, X.; Goodnight, D.; Gao, Z.; Cavusoglu, A. H.; Sabharwal, N.; DeLay, M.; Driks, A.; Sahin, O. Scaling up nanoscale water-driven energy conversion into evaporationdriven engines and generators. Nat. Commun. 2015, 6, 7346–7352.

    Article  CAS  PubMed  Google Scholar 

  11. Keplinger, C.; Sun, J. Y.; Foo, C. C.; Rothemund, P.; Whitesides, G. M.; Suo, Z. Stretchable, transparent, ionic conductors. Science 2013, 341(6149), 984–987.

    Article  CAS  PubMed  Google Scholar 

  12. Zhu, C. H.; Lu, Y.; Peng, J.; Chen, J. F.; Yu, S. H. Photothermally sensitive poly(n-isopropylacrylamide)/graphene oxide nanocomposite hydrogels as remote light-controlled liquid microvalves. Adv. Funct. Mater. 2012, 22(19), 4017–4022.

    Article  CAS  Google Scholar 

  13. Feinberg, A. W.; Feigel, A.; Shevkoplyas, S. S.; Sheehy, S.; Whitesides, G. M.; Parker, K. K. Muscular thin films for building actuators and powering devices. Science 2007, 317(5843), 1366–1370.

    Article  CAS  PubMed  Google Scholar 

  14. Cheng, H.; Liu, J.; Zhao, Y.; Hu, C.; Zhang, Z.; Chen, N.; Jiang, L.; Qu, L. Graphene fibers with predetermined deformation as moisture-triggered actuators and robots. Angew. Chem. Int. Ed. 2013, 52(40), 10482–10486.

    Article  CAS  Google Scholar 

  15. Lee, S. W.; Prosser, J. H.; Purohit, P. K.; Lee, D. Bioinspired hygromorphic actuator exhibiting controlled locomotion. ACS Macro Lett. 2013, 2(11), 960–965.

    Article  CAS  PubMed  Google Scholar 

  16. Yamada, M.; Kondo, M.; Mamiya, J.; Yu, Y.; Kinoshita, M.; Barrett, C. J.; Ikeda, T. Photomobile polymer materials: towards light-driven plastic motors. Angew. Chem. Int. Ed. 2008, 47(27), 4986–4988.

    Article  CAS  Google Scholar 

  17. Mu, J.; Hou, C.; Zhu, B.; Wang, H.; Li, Y.; Zhang, Q. A multiresponsive water-driven actuator with instant and powerful performance for versatile applications. Sci. Rep. 2015, 5, 9503–9509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li, M. H.; Keller, P.; Li, B.; Wang, X.; Brunet, M. Light-driven side-on nematic elastomer actuators. Adv. Mater. 2003, 15(7–8), 569–572.

    Article  CAS  Google Scholar 

  19. Yu, Y.; Maeda, T.; Mamiya, J.; Ikeda, T. Photomechanical effects of ferroelectric liquid-crystalline elastomers containing azobenzene chromophores. Angew. Chem. Int. Ed. 2007, 46(6), 881–883.

    Article  CAS  Google Scholar 

  20. Camacho-Lopez, M.; Finkelmann, H.; Palffy-Muhoray, P.; Shelley, M. Fast liquid-crystal elastomer swims into the dark. Nat. Mater. 2004, 3(5), 307–310.

    Article  CAS  PubMed  Google Scholar 

  21. Ma, Y.; Zhang, Y.; Wu, B.; Sun, W.; Li, Z.; Sun, J. Polyelectrolyte multilayer films for building energetic walking devices. Angew. Chem. Int. Ed. 2011, 50(28), 6254–6257.

    Article  CAS  Google Scholar 

  22. Ma, Y.; Sun, J. Humido-and thermo-responsive free-standing films mimicking the petals of the morning glory flower. Chem. Mater. 2009, 21(5), 898–902.

    Article  CAS  Google Scholar 

  23. Chen, X.; Sun, J. Fabrication of macroporous films with closed honeycomb-like pores from exponentially growing layer-by-layer assembled polyelectrolyte multilayers. Chem. Asian J. 2014, 9(8), 2063–2067.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Basic Research Program (No. 2013CB834503) and the National Natural Science Foundation of China (No. 21225419).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Qi Sun.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, M., Long, TJ., Chen, XL. et al. Humidity-responsive Bilayer Actuators Comprised of Porous and Nonporous Poly(acrylic acid)/Poly(allylamine hydrochloride) Films. Chin J Polym Sci 37, 52–58 (2019). https://doi.org/10.1007/s10118-018-2162-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-018-2162-3

Keywords

Navigation