Chinese Journal of Polymer Science

, Volume 36, Issue 12, pp 1385–1393 | Cite as

Preparation of Polylactide Composite with Excellent Flame Retardance and Improved Mechanical Properties

  • Chu-Bo Sun
  • Hong-Da Mao
  • Feng Chen
  • Qiang Fu


Despite the good biodegradable and mechanical properties, poly(lactic acid) still suffers from a highly inherent flammability, which restricts its applications in the electric and automobile fields. In order to improve the flame retardancy of PLA, in this work, melamine polyphosphate (MPP) and zinc bisdiethylphosphinate (ZnPi) were firstly incorporated into PLA, and the synergistic effect of them on flame retardance of PLA was investigated using limiting oxygen index (LOI), UL-94 vertical measurement, scanning electron microscopy (SEM) and cone calorimeter tests etc. The results showed that PLA composite with 15 wt% of MPP/ZnPi (3:2) had the best flame-retardant efficiency with LOI value of 30.1 and V0 rating in UL-94 tests, which was far better than using MPP or ZnPi alone. What is more, although a wide range of flame retardants have been developed to reduce the flammability, so far, they normally compromise the mechanical properties of PLA. On the premise of maintaining good flame-retardant performance, we improved the toughness of flame-retardant PLA composite, and the impact strength of flame-retardant PLA composite was more than tripled (8.08 kJ/m2) by adding thermoplastic urethanes (TPU). This work offers an innovative method for the design of the unique integration of extraordinary flame retardancy and toughening reinforcement for PLA materials.


Synergistic effect Flame retardant Poly(lactic acid) Impact strength 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the National Natural Science Foundation of China (No. 51721091).

Supplementary material

10118_2018_2150_MOESM1_ESM.pdf (152 kb)
Preparation of Polylactide Composite with Excellent Flame Retardance and Improved Mechanical Properties


  1. 1.
    Yu, L.; Dean, K.; Li, L. Polymer blends and composites from renewable resources. Prog. Polym. Sci. 2006, 31(6), 576–602CrossRefGoogle Scholar
  2. 2.
    Xue, W.; Lv, C.; Jing, Y.; Chen, F.; Fu, Q. Fabrication of electrospun PVDF nanofibers with higher content of poly ft phase and smaller diameter by adding a small amount of dioctadecyl dimethyl ammonium chloride. Chinese J. Polym. Sci. 2017, 35(8), 992–1000CrossRefGoogle Scholar
  3. 3.
    He, Y. L.; Guo, Y. L.; He, R.; Jin, T. X.; Chen, F.; Fu, Q. Towards high molecular weight poly(bisphenol A carbonate) with excellent thermal stability and mechanical properties by solid-state polymerization. Chinese J. Polym. Sci. 2015, 33(8), 1176–1185CrossRefGoogle Scholar
  4. 4.
    Mooney, B. P. The second green revolution? Production of plant-based biodegradable plastics. Biochem. J. 2009, 418(2), 219–232Google Scholar
  5. 5.
    Shen, L.; Worrell, E.; Patel, M. Present and future development in plastics from biomass. Biofuel. Bioprod. Biorefin. 2010, 4(1), 25–40CrossRefGoogle Scholar
  6. 6.
    Kimura K.; Horikoshi Y. Bio-based polymers. Fujitsu. Sci. Tech. J. 2005, 41(2), 173–180Google Scholar
  7. 7.
    He, S.; Guo, Y. C.; Stone, T.; Davis, N.; Kim, D.; Kim, K.; Rafailovich, M. Biodegradable, flame retardant wood-plastic combination via in situ ring-opening polymerization of lactide monomers. J. Wood Sci. 2017, 63(2), 154–160CrossRefGoogle Scholar
  8. 8.
    Fukushima, K.; Murariu, M.; Camino, G.; Dubois, P. Effect of expanded graphite/layered-silicate clay on thermal, mechanical and fire retardant properties of poly (lactic acid). Polym. Degrad. Stab. 2010, 95(6), 1063–1076CrossRefGoogle Scholar
  9. 9.
    Jing, J.; Zhang, Y.; Fang, Z. P. Diphenolic acid based biphosphate on the properties of polylactic acid: synthesis, fire behavior and flame retardant mechanism. Polymer 2017, 108, 29–37CrossRefGoogle Scholar
  10. 10.
    Jing, J.; Zhang, Y.; Tang, X. L.; Zhou, Y.; Li, X. Layer by layer deposition of polyethylenimine and bio-based polyphosphate on ammonium polyphosphate: a novel hybrid for simultaneously improving the flame retardancy and toughness of polylactic acid. Polymer 2017, 108, 361–371CrossRefGoogle Scholar
  11. 11.
    Jiang, P.; Gu, X. Y.; Zhang, S.; Sun, J.; Xu, R.; Bourbigot, S.; Duquesne, S.; Casetta, M. Flammability and thermal degradation of poly(lactic acid)/polycarbonate alloys containing a phosphazene derivative and trisilanollsobutyl POSS. Polymer 2015, 79, 221–231CrossRefGoogle Scholar
  12. 12.
    Mauldin, T. C.; Zammarano, M.; Gilman, J. W.; Shields, J. R.; Boday, D. J. Synthesis and characterization of isosorbide-based polyphosphonates as biobased flame-retardants. Polym. Chem. 2014, 5, 5139–5146CrossRefGoogle Scholar
  13. 13.
    Horny, N.; Kanake, Y.; Chirtoc, M.; Tighzert, L. Optimization of thermal and mechanical properties of bio-polymer based nanocomposites. Polym. Degrad. Stab. 2016, 127, 105–112CrossRefGoogle Scholar
  14. 14.
    Zhao, X. M.; de Juan, S.; Guerrero, F. R.; Li, Z.; Llorca, J.; Wang, D. Y. Effect of jV,jV′-diallyl-phenylphosphoricdiamide on ease of ignition, thermal decomposition behavior and mechanical properties of poly (lactic acid). Polym. Degrad. Stab. 2016, 127, 2–10CrossRefGoogle Scholar
  15. 15.
    Lesaffre, N.; Bellayer, S.; Fontaine, G.; Jimenez, M.; Bourbigot, S. Revealing the impact of ageing on a flame retarded PLA. Polym. Degrad. Stab. 2016, 127, 88–97CrossRefGoogle Scholar
  16. 16.
    Zhao, C. X.; Liu, Y.; Wang, D. Y.; Wang, D. L.; Wang, Y. Z. Synergistic effect of ammonium polyphosphate and layered double hydroxide on flame retardant properties of poly(vinyl alcohol). Polym. Degrad. Stab. 2008, 93(7), 1323–1331CrossRefGoogle Scholar
  17. 17.
    Stevens, G. C.; Mann, A. H. Risks and benefits in the use of flame retardants in consumer products. DTI Report. C. J. Pref, London, 1999Google Scholar
  18. 18.
    Zhan, J; Song, L; Nie, S. B.; Hu, Y. Combustion properties and thermal degradation behavior of polylactide with an effective intumescent flame retardant. Polym. Degrad. Stab. 2009, 94(3), 291–296CrossRefGoogle Scholar
  19. 19.
    Stoclet, G.; Sclavons, M.; Lecouvet, B.; Devaux, J.; van Velthem, P.; Boborodea, A.; Bourbigot, S.; Sallem-Idrissi, N. Elaboration of poly(lactic acid)/halloysite nanocomposites by means of water assisted extrusion: structure, mechanical properties and fire performance. RSC Adv. 2014, 4, 57553–57563CrossRefGoogle Scholar
  20. 20.
    Ke, C. H.; Li, J.; Fang, K. Y.; Zhu, K. L.; Zhu, J.; Yan, Q.; Wang, Y. Z. Synergistic effect between a novel hyperbranched charring agent and ammonium polyphosphate on the flame retardant and anti-dripping properties of polylactide. Polym. Degrad. Stab. 2010, 95(5), 763–770CrossRefGoogle Scholar
  21. 21.
    Li, Y. J.; Shimizu, H. Toughening of polylactide by melt blending with a biodegradable poly(ether)urethane elastomer. Macromol. Biosci. 2007, 7(7), 921–928CrossRefGoogle Scholar
  22. 22.
    Shibata, M. Mechanical properties, morphology, and crystallization behavior of blends of poly(L-lactide) with poly(butylene succinate-co-L-lactate) and poly(butylene succinate). Polymer 2006, 47(10), 3557–3564CrossRefGoogle Scholar
  23. 23.
    Lin, Y.; Zhang, K. Y.; Dong, Z. M.; Dong, L. S.; Li, Y. S. Study of hydrogen-bonded blend of polylactide with biodegradable hyperbranched poly(ester amide). Macromolecules 2007, 40(17), 6257–6267CrossRefGoogle Scholar
  24. 24.
    Gaan, S. Effect of nitrogen additives on flame retardant action of tributyl phosphate: Phosphorus-nitrogen synergism. Polym. Degrad. Stab. 2008, 93(1), 99–108CrossRefGoogle Scholar
  25. 25.
    Duquesne, S.; Bras, M. L.; Jama, C.; Weil, E. D.; Gengembre, L. X-ray photoelectron spectroscopy investigation of fire retarded polymeric materials: application to the study of an intumescent system. Polym. Degrad. Stab. 2002, 77(2), 203–211CrossRefGoogle Scholar
  26. 26.
    Laoutid, F.; Bonnaud, L.; Alexandre, M.; Lopez-Cuesta J. M.; Dubois, P. New prospects in flame retardant polymer materials: from fundamentals to nanocomposites. Mat. Sci. Eng. R 2009, 63(3), 100–125CrossRefGoogle Scholar
  27. 27.
    Bras, M. L.; Duquesne, S.; Magali, F.; Grisel, M.; Poutch, F. Intumescent polypropylene/flax blends: a preliminary study Polym. Degrad. Stab. 2005, 88(1), 80–84CrossRefGoogle Scholar
  28. 28.
    Gaan, S.; Sun, G.; Hutches, K.; Engelhard, M. H. Effect of nitrogen additives on flame retardant action of tributyl phosphate: Phosphorus-nitrogen synergism. Polym. Degrad. Stab. 2008, 93(1), 99–108CrossRefGoogle Scholar
  29. 29.
    Nie, S. B.; Hu Y.; Song L.; He, Q. L.; Yang, D. D.; Chen, H. Synergistic effect between a char forming agent (CFA) and micro encapsulated ammonium polyphosphate on the thermal and flame retardant properties of polypropylene. Polym. Adv. Technol. 2008, 19(8), 1077–1083CrossRefGoogle Scholar
  30. 30.
    Yu, W. J.; Xu, S. M.; Zhang, L.; Fu, Q. Morphology and mechanical properties of immiscible polyethylene/polyamide12 blends prepared by high shear processing. Chinese J. Polym. Sci. 2017, 35(9), 1132–1142CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Polymer Science and EngineeringSichuan University, State Key Laboratory of Polymer Materials EngineeringChengduChina

Personalised recommendations