Toughening Poly(lactic acid) with Imidazolium-based Elastomeric Ionomers

  • Lu Chen
  • Kuan Hu
  • Si-Ting Sun
  • Hai Jiang
  • Dong Huang
  • Kun-Yu Zhang
  • Li Pan
  • Yue-Sheng Li


Imidazolium-based elastomeric ionomers (i-BIIR) were facilely synthesized by ionically modified brominated poly(isobutylene-co-isoprene) (BIIR) with different alkyl chain imidazole and thoroughly explored as novel toughening agents for poly(lactic acid) (PLA). The miscibility, thermal behavior, phase morphology and mechanical property of ionomers and blends were investigated through dynamic mechanical analyses (DMA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), tensile and impact testing. DMA and SEM results showed that better compatibility between the PLA and i-BIIR was achieved compared to the PLA/unmodified BIIR elastomer. A remarkable improvement in ductility with an optimum elongation at break up to 235% was achieved for the PLA/i-BIIR blends with 1-dodecylimidazole alkyl chain (i-BIIR-12), more than 10 times higher than that of pure PLA. The impact strengths of PLA were enhanced from 1.9 kJ/m2 to 4.1 kJ/m2 for the PLA/10 wt% i-BIIR-12 blend. Toughening mechanism had been established by systematical analysis of the compatibility, intermolecular interaction and phase structures of the blends. Interfacial cavitations initiated massive shear yielding of the PLA matrix owing to a suitable interfacial adhesion which played a key role in the enormous toughening effect in these blends. We believed that introducing imidazolium group into the BIIR elastomer was vital for the formation of a suitable interfacial adhesion.


Imidazolium-based ionomer Poly(lactic acid) Brominated poly(isobutylene-co-isoprene) Toughening Blend 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors are grateful for financial support by the National Natural Science Foundation of China (No. 51573130).

Supplementary material

10118_2018_2143_MOESM1_ESM.pdf (449 kb)
Toughening Poly(lactic acid) with Imidazolium-Based Elastomeric Ionomers


  1. 1.
    Chen, G. Q.; Patel, M. K. Plastics derived from biological sources: present and future: a technical and environmental review. Chem. Rev. 2012, 112(4), 2082–2099CrossRefPubMedGoogle Scholar
  2. 2.
    Zhang, X. Y.; Fevre, M.; Jones, G. O.; Waymouth, R. M. Catalysis as an enabling science for sustainable polymers. Chem. Rev. 2018, 118(2), 839–885CrossRefPubMedGoogle Scholar
  3. 3.
    Auras, R.; Harte, B.; Selke, S. An overview of polylactides as packaging materials. Macromol. Biosci. 2004, 4(9), 835–864CrossRefPubMedGoogle Scholar
  4. 4.
    Farah, S.; Anderson, D. G.; Langer, R. Physical and mechanical properties of PLA, and their functions in widespread applications -a comprehensive review. Adv. Drug Deliv. Rev. 2016, 107(21), 367–392CrossRefPubMedGoogle Scholar
  5. 5.
    Hou, J. Z.; Sun, X. P.; Zhang, W. X.; Li, L. L.; Teng, H. Preparation and characterization of electrospun fibers based on poly(L-lactic acid)/cellulose acetate. Chinese J. Polym. Sci. 2012, 30(6), 916–922CrossRefGoogle Scholar
  6. 6.
    Yao, C.; Li, X. S.; Neoh, K. G.; Shi, Z. L.; Kang, E. T. Antibacterial poly(D,L-lactide) (PDLLA) fibrous membranes modified with quaternary ammonium moieties. Chinese J. Polym. Sci. 2010, 28(4), 581–588CrossRefGoogle Scholar
  7. 7.
    Wu, N. J.; Zhang, H.; Fu, G. L. Super-tough poly(lactide) thermoplastic vulcanizates based on modified natural rubber. ACS Sustain. Chem. Eng. 2017, 5(1), 78–84CrossRefGoogle Scholar
  8. 8.
    Wang, P.; Xu, P.; Wei, H. B.; Fang, H. G.; Ding, Y. S. Effect of block copolymer containing ionic liquid moiety on interfacial polarization in PLA/PCL blends. J. Appl. Polym. Sci. 2018, 10.1002/APP.46161Google Scholar
  9. 9.
    Delgado, P. A.; Hillmyer, M. A. Combining block copolymers and hydrogen bonding for poly(lactide) toughening. RSC Adv. 2014, 4(26), 13266–13273CrossRefGoogle Scholar
  10. 10.
    Hao, Y. P.; Ge, H. H.; Han, L. J.; Zhang, H. L.; Dong, L. S.; Sun, S. L. Thermal and mechanical properties of polylactide toughened with a butyl acrylate-ethyl acrylate-glysidyl methacrylate copolymer. Chinese J. Polym. Sci. 2013, 31(11), 1519–1527CrossRefGoogle Scholar
  11. 11.
    Zhang, K. Toughened sustainable green composites from poly(3-hydroxybutyrate-co-3-hydroxyvalerate) based ternary blends and miscanthus biofiber. ACS Sustain. Chem. Eng. 2014, 2(10), 2345–2354CrossRefGoogle Scholar
  12. 12.
    Yu, R. L.; Zhang, L. S.; Feng, Y. H.; Zhang, R. Y.; Zhu, J. Improvement in toughness of polylactide by melt blending with bio-based poly(ester)urethane. Chinese J. Polym. Sci. 2014, 32(8), 1099–1110CrossRefGoogle Scholar
  13. 13.
    Xing, Q.; Li, R. B.; Dong, X.; Zhang, X. Q.; Zhang, L. Y.; Wang, D. J. Phase morphology, crystallization behavior and mechanical properties of poly(L-lactide) toughened with biodegradable polyurethane: effect of composition and hard segment ratio. Chinese J. Polym. Sci. 2015, 33(9), 1294–1304CrossRefGoogle Scholar
  14. 14.
    Zhang, K. Y.; Ran, X. H.; Wang, X. M.; Han, C. Y.; Han, L. J.; Wen, X.; Zhuang, Y. G.; Dong, L. S. Improvement in toughness and crystallization of poly(L-lactic acid) by melt blending with poly(epichlorohydrin-co-ethylene oxide). Polym. Eng. Sci. 2011, 51(12), 2370–2380CrossRefGoogle Scholar
  15. 15.
    Yuan, D. S.; Chen, Z. H.; Xu, C. H.; Chen, K. L.; Chen, Y. K. Fully biobased shape memory material based on novel cocontinuous structure in poly(lactic acid)/natural rubber TPVs fabricated via peroxide-induced dynamic vulcanization and in situ interfacial compatibilization. ACS Sustain. Chem. Eng. 2015, 3(11), 2856–2865CrossRefGoogle Scholar
  16. 16.
    Zhang, K. Y.; Nagarajan, V.; Misra, M.; Mohanty, A. K. Supertoughened renewable PLA reactive multiphase blends system: phase morphology and performance. ACS Appl. Mater. Interfaces 2014, 6(15), 12436–12448CrossRefPubMedGoogle Scholar
  17. 17.
    Dong, W. Y.; He, M. F.; Wang, H. T.; Ren, F. L.; Zhang, J. Q.; Zhao, X. W.; Li, Y. J. PLLA/ABS blends compatibilized by reactive comb polymers: double Tg depression and significantly improved toughness. ACS Sustain. Chem. Eng. 2015, 3(10), 2542–2550CrossRefGoogle Scholar
  18. 18.
    Lin, Y.; Zhang, K. Y.; Dong, Z. M.; Dong, L. S.; Li, Y. S. Study of hydrogen-bonded blend of polylactide with biodegradable hyperbranched poly(ester amide). Macromolecules 2007, 40(17), 6257–6267CrossRefGoogle Scholar
  19. 19.
    Han, S. I.; Yoo, Y. T; Kim, D. K.; Im, S. S. Biodegradable aliphatic polyester ionomers. Macromol. Biosci. 2004, 4(3), 199–207CrossRefGoogle Scholar
  20. 20.
    Park, S. B.; Hwang, S. Y.; Moon, C. W.; Im, S. S. Plasticizer effect of novel PBS ionomer in PLA/PBS ionomer blends. Macromol. Res. 2010, 18(5), 463–471CrossRefGoogle Scholar
  21. 21.
    Liu, H. Z.; Chen, F.; Liu, B.; Estep, G.; Zhang, J. W. Super toughened poly(lactic acid) ternary blends by simultaneous dynamic vulcanization and interfacial compatibilization. Macromolecules 2010, 43(14), 6058–6066CrossRefGoogle Scholar
  22. 22.
    Liu, H. Z.; Song, W. J.; Chen, F.; Guo, L.; Zhang, J. W. Interaction of microstructure and interfacial adhesion on impact performance of polylactide (PLA) ternary blends. Macromolecules 2011, 44(6), 1513–1522CrossRefGoogle Scholar
  23. 23.
    Liu, H. Z.; Guo, X. J.; Song, W. J.; Zhang, J. W. Effects of metal ion type on ionomer-assisted reactive toughening of poly(lactic acid). Ind. Eng. Chem. Res. 2013, 52(13), 4787–4793CrossRefGoogle Scholar
  24. 24.
    Megevand, B.; Pruvost, S.; Lins, L. C.; Livil, S.; Gérard, J. F.; Duchet-Rumeau, J. Probing nanomechanical properties with AFM to understand the structure and behavior of polymer blends compatibilized with ionic liquids. RSC Adv. 2016, 6(98), 96421–96430CrossRefGoogle Scholar
  25. 25.
    Lins, L. C.; Livi, S.; Duchet-Rumeau, J.; Gérard, J. F. Phosphonium ionic liquids as new compatibilizing agents of biopolymer blends composed of poly(butylene-adipate-coterephtalate)/poly(lactic acid) (PBAT/PLA). RSC Adv. 2015, 5(73), 59082–59092CrossRefGoogle Scholar
  26. 26.
    Wang, P.; Zhang, D.; Zhou, Y. Y.; Li, Y.; Fang, H. G.; Wei, H. B.; Ding, Y. S. A well-defined biodegradable 1,2,3-triazoliumfunctionalized PEG-è-PCL block copolymer: facile synthesis and its compatibilization for PLA/PCL blends. Ionics 2018, 10.1007/s11581-017-2234-3Google Scholar
  27. 27.
    Jérémy, O.; Jean-Marie, R.; Cédric, S.; Sophie, B.; Apostolos, E.; Dubois, P.; Giannelis, E. P. Shape-memory behavior of polylactide/silica ionic hybrids. Macromolecules 2017, 50(7), 2896–2905CrossRefGoogle Scholar
  28. 28.
    Livi, S.; Duchet-Rumeau, J.; Gérard, J. F.; Pham, T. N. Polymers and ionic liquids: a successful wedding. Macromol. Chem. Phys. 2015, 216(4), 359–368CrossRefGoogle Scholar
  29. 29.
    Chen, B. K.; Wu, T. Y.; Chang, Y. M.; Chen, A. F. Ductile polylactic acid prepared with ionic liquids. Chem. Eng. J. 2013, 215-216, 886–893CrossRefGoogle Scholar
  30. 30.
    Gardella, L.; Furfaro, D.; Galimberti, M.; Monticelli, O. On the development of facile approach based on the use of ionic liquids: preparation of PLLA (sc-PLA)/high surface area nanographite systems. Green Chem. 2015, 17(7), 4082–4088CrossRefGoogle Scholar
  31. 31.
    Cui, J.; Nie, F. M.; Yang, J. X.; Pan, L.; Ma, Z.; Li, Y. S. Novel imidazolium-Based poly(ionic liquid)s with different counter ions for self-healing. J. Mater. Chem. A 2017, 5, 25220–25229CrossRefGoogle Scholar
  32. 32.
    Le, H. H.; Das, A. Triggering the self-healing properties of modifed bromobutyl rubber by intrinsically electrical heating. Macromol. Mater. Eng. 2017, 302, 1600385CrossRefGoogle Scholar
  33. 33.
    Das, A.; Sallat, A.; Böhme, F.; Suckow, M.; Basu, D.; Wießner, S.; Stöckelhuber, K. W.; Voit, B.; Heirich, G. Ionic modification turns commercial rubber into a self-healing material. ACS Appl. Mater. Interfaces 2015, 7(37), 20623–20630CrossRefPubMedGoogle Scholar
  34. 34.
    Suckow, M.; Mordvinkin, A.; Roy, M.; Singha, N. K.; Heinrich, G.; Voit, B.; Saalwächter, K.; Böhme, F. Tuning the properties and self-healing behavior of ionically modified poly(isobutylene-co-isoprene) rubber. Macromolecules 2018, 51(2), 468–479CrossRefGoogle Scholar
  35. 35.
    Meng, Q. Q.; Wang, B.; Pan, L.; Li, Y. S.; Ma, Z. Synthesis and properties of isotactic polypropylene ionomers containing ammonium Ions. Acta Polymerica Sinica (in Chinese) 2017, 11, 1762–1772Google Scholar
  36. 36.
    Lee, M.; Choi, U. H.; Wi, S.; Slebodnick, C.; Colby, R. H.; Gibson, H. W. 1,2-Bis[iV-(iV'-alkylimidazolium)] ethane salts: a new class of organic ionic plastic crystals. J. Mater. Chem. 2011, 21(33), 12280–12287CrossRefGoogle Scholar
  37. 37.
    Dakin, J. M.; Shanmugam, K. V. S.; Twigg, C.; Whitney, R. A.; Parent, J. S. Isobutylene-rich macromonomers: dynamics and yields of peroxide-initiated crosslinking. Polym. Chem. 2015, 53(1), 123–132CrossRefGoogle Scholar
  38. 38.
    Parent, J. S.; Porter, A. M. J.; Kleczek, M. R.; Whitney, R. A. Imidazolium bromide derivatives of poly(isobutylene-coisoprene): a new class of elastomeric ionomers. Polymer 2011, 52(24), 5410–5418CrossRefGoogle Scholar
  39. 39.
    Kim, A.; Miller, K. M. Synthesis and thermal analysis of crosslinked imidazolium-containing polyester networks prepared by Michael addition polymerization. Polymer 2012, 53(25), 5666–5674CrossRefGoogle Scholar
  40. 40.
    Ye, Y. S.; Sharick, S.; Davis, E. M.; Winey, K. I.; Elabd, Y. A. High hydroxide conductivity in polymerized ionic liquid block copolymers. ACS Macro Lett. 2013, 2(7), 575–580CrossRefGoogle Scholar
  41. 41.
    Nykaza, J. R.; Ye, Y. S.; Elabd, Y. A. Polymerized ionic liquid diblock copolymers with long alkyl side-chain length. Polymer 2014, 55(16), 3360–3369CrossRefGoogle Scholar
  42. 42.
    Wu, J. R.; Huang, G. S.; Pan, Q. Y.; Zheng, J.; Zhu, Y. C.; Wang, B. An investigation on the molecular mobility through the glass transition of chlorinated butyl rubber. Polymer 2007, 48(26), 7653–7659CrossRefGoogle Scholar
  43. 43.
    Mora-Barrantes, I.; Malmierica, M. A.; Valentin, J. L.; Rodriguez, A.; Ibarra, L. Effect of covalent cross-links on the network structure of thermo-reversible ionic elastomers. Soft Matter 2012, 8(19), 5201–5213CrossRefGoogle Scholar
  44. 44.
    Marin, N.; Favis, B. D. Co-continuous morphology development in partially miscible PMMA/PC blends. Polymer 2002, 43(17), 4723–4731CrossRefGoogle Scholar
  45. 45.
    Harrats, C.; Thomas, S. and Groeninckx, G. "Micro-and nanostructured multiphase polymer blends system", CRC Press, 2006, p. 4-33Google Scholar
  46. 46.
    Phetwarotai, W.; Tanrattanakul, V.; Phusunti, N. Synergistic effect of nucleation and compatibilization on the polylactide and poly(butylene adipate-co-terephthalate) blend films. Chinese J. Polym. Sci. 2016, 34(9), 1129–1140CrossRefGoogle Scholar
  47. 47.
    Nagarajan, V. Overcoming the fundamental challenges in improving the impact strength and crystallinity of PLA biocomposites: influence of nucleating agent and mold temperature. ACS Appl. Mater. Interfaces 2015, 7(21), 11203–11214CrossRefPubMedGoogle Scholar
  48. 48.
    Yu, F.; Huang, H. X. Simultaneously toughening and reinforcing poly(lactic acid)/thermoplastic polyurethane blend via enhancing interfacial adhesion by hydrophobic silica nanoparticles. Polym. Test. 2015, 45, 107–113CrossRefGoogle Scholar
  49. 49.
    Zhang, K. Y.; Mohanty, A. K.; Misra, M. Fully biodegradable and biorenewable ternary blends from polylactide, poly(3-hydroxybutyrate-co-hydroxyvalerate) and poly(butylene succinate) with balanced properties. ACS Appl. Mater. Interfaces 2012, 4(6), 3091–3101CrossRefPubMedGoogle Scholar
  50. 50.
    Zhang, K. Y.; Nagarajan, V.; Misra, M.; Mohanty, A. K. Super toughened renewable PLA reactive multiphase blends system: phase morphology and performance. ACS Appl. Mater. Interfaces 2014, 6(15), 12436–12448.CrossRefPubMedGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and EngineeringTianjin UniversityTianjinChina
  2. 2.School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina
  3. 3.Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)TianjinChina

Personalised recommendations