Multifunctional Nanoplatform Based on pH-responsive Micelle Coated with Discontinuous Gold Shell for Cancer Photothermo-chemotherapy and Photoacoustic Tomography

Abstract

Photothermo-chemotherapy, as a new strategy for cancer treatment, incorporates the complementary advantages of photothermal therapy and chemotherapy. In this study, a pH-sensitive diblock copolymer poly(aspartic acid-butanediamine)-poly(2-(diisopropylamino)ethyl methacrylate) (PAsp(DAB)-PDPA) was synthesized and self-assembled into doxorubicin-loaded micelle, which was further used as a template to form a gold nanoshell. After further modification with poly(ethylene glycol), the resulting nanoplatform provided good biocompatibility and desirable photo-thermal conversion efficiency to facilitate photothermal therapy. Meanwhile the nanoparticle also exhibited pH sensitivity, which prevented drug loss while circulating in the blood but enabled rapid drug release after endocytosis. An improved effect was achieved with the combination of photothermal therapy and chemotherapy. In addition, systemic delivery of the nanoplatform could be monitored by photoacoustic tomography. Thereby, this multifunctional nanoplatform would be highly potential for the diagnosis and therapy of cancer.

This is a preview of subscription content, log in to check access.

References

  1. 1

    Kelkar, S. S.; Reineke, T. M. Theranostics: combining imaging and therapy. Bioconjugate Chem. 2011, 22, 1879–1903.

    Article  CAS  Google Scholar 

  2. 2

    Suter, T. M.; Ewer, M. S. Cancer drugs and the heart: importance and management. Eur. Heart J. 2013, 34(15), 1102.

    Article  CAS  PubMed  Google Scholar 

  3. 3

    Kerckhove, N.; Colin, A.; Conde, S.; Chaleteix, C.; Pezet, D.; Balayssac, D. Long-term effects, pathophysiological mechanisms, and risk factors of chemotherapy-induced peripheral neuropathies: a comprehensive literature review. Front. Pharmacol. 2017, 8, 86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Zahreddine, H.; Borden, K. L. B. Mechanisms and insights into drug resistance in cancer. Front. Pharmacol. 2013, 4, 28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    May, J. P.; Li, S. D. Hyperthermia-induced drug targeting. Expert Opin. Drug Del. 2013, 10(4), 511–527.

    Article  CAS  Google Scholar 

  6. 6

    van Bree, C.; Krooshoop, J. J.; Rietbroek, R. C.; Kipp, J. B. A.; Piet, J. M. Hyperthermia enhances tumor uptake and antitumor efficacy of thermostable liposomal daunorubicin in a rat solid tumor. Cancer Res. 1996, 56(3), 563–568.

    PubMed  Google Scholar 

  7. 7

    Goldberg, S. N.; Kmel, I. R.; Kruskal, J. B.; Reynolds, K.; Monsky, W. L.; Stuart, K. E.; Ahmed, M.; Raptopoulos, V. Radiofrequency ablation of hepatic tumors: Increased tumor destruction with adjuvant liposomal doxorubicin therapy. Am. J. Roentgenol. 2002, 179(1), 93–101.

    Article  Google Scholar 

  8. 8

    Kong, G.; Braun, R. D.; Dewhirst, M. W. Hyperthermia enables tumor-specific nanoparticle delivery: Effect of particle size. Cancer Res. 2000, 60(16), 4440–4445.

    CAS  PubMed  Google Scholar 

  9. 9

    Chen, Y. I.; Peng, C. L.; Lee, P. C.; Tsai, M. H.; Lin, C. Y.; Shih, Y. H.; Wei, M. F.; Luo, T. Y.; Shieh, M. J. Traceable self-assembly of laser-triggered cyanine-based micelle for synergistic therapeutic effect. Adv. Healthc. Mater. 2015, 4(6), 892–902.

    Article  CAS  PubMed  Google Scholar 

  10. 10

    Luo, H. H.; Wang, Q. L.; Deng, Y. B.; Yang, T.; Ke, H. T.; Yang, H. H.; He, H.; Guo, Z. Q.; Yu, D.; Wu, H.; Chen, H. B. Mutually synergistic nanoparticles for effective thermomolecularly targeted therapy. Adv. Funct. Mater. 2017, 27(39), 1702834.

    Article  CAS  Google Scholar 

  11. 11

    Chen, W. S.; Ouyang, J.; Liu, H.; Chen, M.; Zeng, K.; Sheng, J. P.; Liu, Z. J.; Han, Y. J.; Wang, L. Q.; Li, J.; Deng, L.; Liu, Y. N.; Guo, S. J. Black phosphorus nanosheet-based drug delivery system for synergistic photodynamic/photothermal/chemotherapy of cancer. Adv. Mater. 2017, 29(5), 1603864.

    Article  CAS  Google Scholar 

  12. 12

    Feng, L.; Gai, S.; He, F.; Dai, Y.; Zhong, C.; Yang, P.; Lin, J. Multifunctional mesoporous ZrO2 encapsulated upconversion nanoparticles for mild NIR light activated synergistic cancer therapy. Biomaterials 2017, 147, 39–52.

    Article  CAS  PubMed  Google Scholar 

  13. 13

    Yao, X. Graphene quantum dots-capped magnetic mesoporous silica nanoparticles as a multifunctional platform for controlled drug delivery, magnetic hyperthermia, and photothermal therapy. Small 2017, 13(2), 1602225.

    Article  CAS  Google Scholar 

  14. 14

    Riley, R. S.; Day, E. S. Gold nanoparticle-mediated photothermal therapy: applications and opportunities for multimodal cancer treatment. WIRES Nanomed. Nanotechnol. 2017, 9(4), e1449.

    Article  CAS  Google Scholar 

  15. 15

    Jiang, K.; Smith, D. A.; Pinchuk, A. Size-dependent photothermal conversion efficiencies of plasmonically heated gold nanoparticles. J. Phys. Chem. C 2013, 117(51), 27073–27080.

    Article  CAS  Google Scholar 

  16. 16

    Khlebtov, N.; Dykman, L. Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem. Soc. Rev. 2011, 40(3), 1647–1671.

    Article  Google Scholar 

  17. 17

    Jain, P. K.; EI-Sayed, I. H.; EI-Sayed, M. A. Au nanoparticles target cancer. Nano Today 2007, 2(1), 18–29.

    Article  Google Scholar 

  18. 18

    Vigderman, L.; Zubarev, E. R. Therapeutic platforms based on gold nanoparticles and their covalent conjugates with drug molecules. Adv. Drug Deliver. Rev. 2013, 65(5), 663–676.

    Article  CAS  Google Scholar 

  19. 19

    Weber, J.; Beard, P. C.; Bohndiek, S. E. Contrast agents for molecular photoacoustic imaging. Nat. Methods 2016, 13(8), 639–650.

    Article  CAS  PubMed  Google Scholar 

  20. 20

    Wang, L. V.; Yao, J. J. A practical guide to photoacoustic tomography in the life sciences. Nat. Methods 2016, 13(8), 627–638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Upputuri, P. K.; Pramanik, M. Recent advances toward preclinical and clinical translation of photoacoustic tomography: a review. J. Biomed. Opt. 2017, 22(4), 041006.

    Article  Google Scholar 

  22. 22

    Perrault, S. D.; Chan, W. C. W. Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50–200 nm. J. Am. Chem. Soc. 2009, 131(47), 17042.

    Article  CAS  PubMed  Google Scholar 

  23. 23

    Lohse, S. E.; Murphy, C. J. The quest for shape control: a history of gold nanorod synthesis. Chem. Mater. 2013, 25(8), 1250–1261.

    Article  CAS  Google Scholar 

  24. 24

    Chen, J. Y.; Wiley, B.; Li, Z. Y.; Campbell, D.; Saeki, F.; Cang, H.; Au, L.; Lee, J.; Li, X. D.; Xia, Y. N. Gold nanocages: Engineering their structure for biomedical applications. Adv. Mater. 2005, 17(18), 2255–261.

    Article  CAS  Google Scholar 

  25. 25

    Ke, H. T.; Wang, J. R.; Dai, Z. F.; Jin, E. Y. S.; Qu, Z.; Xing, Z. W.; Guo, C. X.; Yue, X. L.; Liu, J. B. Gold-nanoshelled microcapsules: a theranostic agent for ultrasound contrast imaging and photothermal therapy. Angew. Chem. Int. Ed. 2011, 50(13), 3017–3021.

    Article  CAS  Google Scholar 

  26. 26

    Zhang, L.; Xiao, H.; Li, J. G.; Cheng, D.; Shuai, X. T. Codelivery of doxorubicin and arsenite with reduction and pH dual-sensitive vesicle for synergistic cancer therapy. Nanoscale 2016, 8(25), 12608–12617.

    Article  CAS  PubMed  Google Scholar 

  27. 27

    Zhou, G. Y.; Xiao, H.; Li, X. X.; Huang, Y.; Song, W.; Song, L.; Chen, M. W.; Cheng, D.; Shuai, X. T. Gold nanocage decorated pH-sensitive micelle for highly effective photothermo-chemotherapy and photoacoustic imaging. Acta Biomater. 2017, 64, 223–236.

    Article  CAS  PubMed  Google Scholar 

  28. 28

    Lu, L.; Wang, Y.; Cao, M.; Chen, M.; Lin, B.; Duan, X.; Zhang, F.; Mao, J.; Shuai, X.; Shen, J. A novel polymeric micelle used for in vivo MR imaging tracking of neural stem cells in acute ischemic stroke. RSC Adv. 2017, 7, 15041–15052.

    Article  CAS  Google Scholar 

  29. 29

    Lai, J. T.; Filla, D.; Shea, R. Functional polymers from novel carboxyl-terminated trithiocarbonates as highly efficient RAFT agents. Macromolecules 2002, 35(18), 6754–6756.

    Article  CAS  Google Scholar 

  30. 30

    Du, J.; Tang, Y.; Lewis, A. L.; Armes, S. P. pH-sensitive vesicles based on a biocompatible zwitterionic diblock copolymer. J. Am. Chem. Soc. 2005, 127(51), 17982–17983.

    Article  CAS  PubMed  Google Scholar 

  31. 31

    Pissuwan, D.; Boyer, C.; Gunasekaran, K.; Davis, T. P.; Bulmus, V. In vitro cytotoxicity of RAFT polymers. Biomacromolecules 2010, 11(2), 412–420.

    Article  CAS  PubMed  Google Scholar 

  32. 32

    Chong, Y. K.; Moad, G.; Rizardo, E.; Thang, S. H. Thiocarbonylthio end group removal from RAFT-synthesized polymers by radical-induced reduction. Macromolecules 2007, 40(13), 4446–4455.

    Article  CAS  Google Scholar 

  33. 33

    Wang, Y. R.; Yin, T. H.; Su, Z. W.; Qiu, C.; Wang, Y.; Zheng, R. Q.; Chen, M. W.; Shuai, X. T. Highly uniform ultrasoundsensitive nanospheres produced by a pH-induced micelle-tovesicle transition for tumor-targeted drug delivery. Nano Res. 2017, doi: 10.1007/s12274-017-1939-y.

    Google Scholar 

  34. 34

    Kwon, G. S.; Naito, M.; Yokoyama, M.; Okano, T.; Sakurai, Y.; Kataoka, K. Physical entrapment of adriamycin in AB block copolymer micelles. Pharm. Res. 1995, 12(2), 192–195.

    Article  CAS  PubMed  Google Scholar 

  35. 35

    Tan, Y. W.; Li, Y. F.; Zhu, D. B. Fabrication of gold nanoparticles using a trithiol (thiocyanuric acid) as the capping agent. Langmuir 2002, 18(8), 3392–3395.

    Article  CAS  Google Scholar 

  36. 36

    Jana, N. R.; Gearheart, L.; Murphy, C. J. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J. Phys. Chem. B 2001, 105(19), 4065–4067.

    Article  CAS  Google Scholar 

  37. 37

    Petersen, H.; Fechner, P. M.; Fischer, D. Kissel, T. Synthesis, characterization, and biocompatibility of polyethyleniminegraft-poly(ethylene glycol) block copolymers. Macromolecules 2002, 35(18), 6867–6874.

    Article  CAS  Google Scholar 

  38. 38

    Alexis, F.; Pridgen, E.; Molnar, L. K.; Farokhzad, O. C. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharmaceut. 2008, 5(4), 505–515.

    Article  CAS  Google Scholar 

  39. 39

    Maeda, H.; Wu, J.; Sawa, T.; Matsumura, Y.; Hori, K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control. Release 2000, 65(1-2), 271–284.

    Article  CAS  PubMed  Google Scholar 

  40. 40

    Honary, S.; Zahir, F. Effect of zeta potential on the properties of nano-drug delivery systems - a review (Part 2). Trop. J. Pharm. Res. 2013, 12(2), 265–273.

    Google Scholar 

  41. 41

    Ganta, S.; Devalapally, H.; Shahiwala, A.; Amiji, M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J. Control. Release 2008, 126(3), 187–204.

    Article  CAS  PubMed  Google Scholar 

  42. 42

    Canton, I.; Battaglia, G. Endocytosis at nanoscale. Chem. Soc. Rev. 2012, 41(7), 2718–2739.

    Article  CAS  PubMed  Google Scholar 

  43. 43

    Shuai, X. T.; Ai, H.; Nasongkla, N.; Kim, S.; Gao, J. M. Micellar carriers based on block copolymers of poly(e-caprolactone) and poly(ethylene glycol) for doxorubicin delivery. J. Control. Release 2004, 98(3), 415–426.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. U1401242), National Basic Research Program of China (No. 2015CB755500), Natural Science Foundation of the Guangdong Province (No. 2014A030312018) and the Fundamental Research Funds for the Central Universities (Nos. 17lgjc01 and 17lgpy08).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yong Wang.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Li, X., Zhang, L. et al. Multifunctional Nanoplatform Based on pH-responsive Micelle Coated with Discontinuous Gold Shell for Cancer Photothermo-chemotherapy and Photoacoustic Tomography. Chin J Polym Sci 36, 1139–1149 (2018). https://doi.org/10.1007/s10118-018-2141-8

Download citation

Keywords

  • Gold nanoshell
  • Photoacoustic tomography
  • Photothermo-chemotherapy
  • pH-sensitive micelle