Chinese Journal of Polymer Science

, Volume 36, Issue 10, pp 1139–1149 | Cite as

Multifunctional Nanoplatform Based on pH-responsive Micelle Coated with Discontinuous Gold Shell for Cancer Photothermo-chemotherapy and Photoacoustic Tomography

  • Yi Huang
  • Xiao-Xia Li
  • Lu Zhang
  • Xiao-Yan Chen
  • Cheng-Bo Liu
  • Jing-Qin Chen
  • Yong WangEmail author
  • Xin-Tao Shuai


Photothermo-chemotherapy, as a new strategy for cancer treatment, incorporates the complementary advantages of photothermal therapy and chemotherapy. In this study, a pH-sensitive diblock copolymer poly(aspartic acid-butanediamine)-poly(2-(diisopropylamino)ethyl methacrylate) (PAsp(DAB)-PDPA) was synthesized and self-assembled into doxorubicin-loaded micelle, which was further used as a template to form a gold nanoshell. After further modification with poly(ethylene glycol), the resulting nanoplatform provided good biocompatibility and desirable photo-thermal conversion efficiency to facilitate photothermal therapy. Meanwhile the nanoparticle also exhibited pH sensitivity, which prevented drug loss while circulating in the blood but enabled rapid drug release after endocytosis. An improved effect was achieved with the combination of photothermal therapy and chemotherapy. In addition, systemic delivery of the nanoplatform could be monitored by photoacoustic tomography. Thereby, this multifunctional nanoplatform would be highly potential for the diagnosis and therapy of cancer.


Gold nanoshell Photoacoustic tomography Photothermo-chemotherapy pH-sensitive micelle 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the National Natural Science Foundation of China (No. U1401242), National Basic Research Program of China (No. 2015CB755500), Natural Science Foundation of the Guangdong Province (No. 2014A030312018) and the Fundamental Research Funds for the Central Universities (Nos. 17lgjc01 and 17lgpy08).

Supplementary material

10118_2018_2141_MOESM1_ESM.pdf (278 kb)
Multifunctional Nanoplatform Based on pH-responsive Micelle Coated with Discontinuous Gold Shell for Cancer Photothermo-Chemotherapy and Photoacoustic Tomography


  1. 1.
    Kelkar, S. S.; Reineke, T. M. Theranostics: combining imaging and therapy. Bioconjugate Chem. 2011, 22, 1879–1903.CrossRefGoogle Scholar
  2. 2.
    Suter, T. M.; Ewer, M. S. Cancer drugs and the heart: importance and management. Eur. Heart J. 2013, 34(15), 1102.CrossRefPubMedGoogle Scholar
  3. 3.
    Kerckhove, N.; Colin, A.; Conde, S.; Chaleteix, C.; Pezet, D.; Balayssac, D. Long-term effects, pathophysiological mechanisms, and risk factors of chemotherapy-induced peripheral neuropathies: a comprehensive literature review. Front. Pharmacol. 2017, 8, 86.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Zahreddine, H.; Borden, K. L. B. Mechanisms and insights into drug resistance in cancer. Front. Pharmacol. 2013, 4, 28.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    May, J. P.; Li, S. D. Hyperthermia-induced drug targeting. Expert Opin. Drug Del. 2013, 10(4), 511–527.CrossRefGoogle Scholar
  6. 6.
    van Bree, C.; Krooshoop, J. J.; Rietbroek, R. C.; Kipp, J. B. A.; Piet, J. M. Hyperthermia enhances tumor uptake and antitumor efficacy of thermostable liposomal daunorubicin in a rat solid tumor. Cancer Res. 1996, 56(3), 563–568.PubMedGoogle Scholar
  7. 7.
    Goldberg, S. N.; Kmel, I. R.; Kruskal, J. B.; Reynolds, K.; Monsky, W. L.; Stuart, K. E.; Ahmed, M.; Raptopoulos, V. Radiofrequency ablation of hepatic tumors: Increased tumor destruction with adjuvant liposomal doxorubicin therapy. Am. J. Roentgenol. 2002, 179(1), 93–101.CrossRefGoogle Scholar
  8. 8.
    Kong, G.; Braun, R. D.; Dewhirst, M. W. Hyperthermia enables tumor-specific nanoparticle delivery: Effect of particle size. Cancer Res. 2000, 60(16), 4440–4445.PubMedGoogle Scholar
  9. 9.
    Chen, Y. I.; Peng, C. L.; Lee, P. C.; Tsai, M. H.; Lin, C. Y.; Shih, Y. H.; Wei, M. F.; Luo, T. Y.; Shieh, M. J. Traceable self-assembly of laser-triggered cyanine-based micelle for synergistic therapeutic effect. Adv. Healthc. Mater. 2015, 4(6), 892–902.CrossRefPubMedGoogle Scholar
  10. 10.
    Luo, H. H.; Wang, Q. L.; Deng, Y. B.; Yang, T.; Ke, H. T.; Yang, H. H.; He, H.; Guo, Z. Q.; Yu, D.; Wu, H.; Chen, H. B. Mutually synergistic nanoparticles for effective thermomolecularly targeted therapy. Adv. Funct. Mater. 2017, 27(39), 1702834.CrossRefGoogle Scholar
  11. 11.
    Chen, W. S.; Ouyang, J.; Liu, H.; Chen, M.; Zeng, K.; Sheng, J. P.; Liu, Z. J.; Han, Y. J.; Wang, L. Q.; Li, J.; Deng, L.; Liu, Y. N.; Guo, S. J. Black phosphorus nanosheet-based drug delivery system for synergistic photodynamic/photothermal/chemotherapy of cancer. Adv. Mater. 2017, 29(5), 1603864.CrossRefGoogle Scholar
  12. 12.
    Feng, L.; Gai, S.; He, F.; Dai, Y.; Zhong, C.; Yang, P.; Lin, J. Multifunctional mesoporous ZrO2 encapsulated upconversion nanoparticles for mild NIR light activated synergistic cancer therapy. Biomaterials 2017, 147, 39–52.CrossRefPubMedGoogle Scholar
  13. 13.
    Yao, X. Graphene quantum dots-capped magnetic mesoporous silica nanoparticles as a multifunctional platform for controlled drug delivery, magnetic hyperthermia, and photothermal therapy. Small 2017, 13(2), 1602225.CrossRefGoogle Scholar
  14. 14.
    Riley, R. S.; Day, E. S. Gold nanoparticle-mediated photothermal therapy: applications and opportunities for multimodal cancer treatment. WIRES Nanomed. Nanotechnol. 2017, 9(4), e1449.CrossRefGoogle Scholar
  15. 15.
    Jiang, K.; Smith, D. A.; Pinchuk, A. Size-dependent photothermal conversion efficiencies of plasmonically heated gold nanoparticles. J. Phys. Chem. C 2013, 117(51), 27073–27080.CrossRefGoogle Scholar
  16. 16.
    Khlebtov, N.; Dykman, L. Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem. Soc. Rev. 2011, 40(3), 1647–1671.CrossRefGoogle Scholar
  17. 17.
    Jain, P. K.; EI-Sayed, I. H.; EI-Sayed, M. A. Au nanoparticles target cancer. Nano Today 2007, 2(1), 18–29.CrossRefGoogle Scholar
  18. 18.
    Vigderman, L.; Zubarev, E. R. Therapeutic platforms based on gold nanoparticles and their covalent conjugates with drug molecules. Adv. Drug Deliver. Rev. 2013, 65(5), 663–676.CrossRefGoogle Scholar
  19. 19.
    Weber, J.; Beard, P. C.; Bohndiek, S. E. Contrast agents for molecular photoacoustic imaging. Nat. Methods 2016, 13(8), 639–650.CrossRefPubMedGoogle Scholar
  20. 20.
    Wang, L. V.; Yao, J. J. A practical guide to photoacoustic tomography in the life sciences. Nat. Methods 2016, 13(8), 627–638.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Upputuri, P. K.; Pramanik, M. Recent advances toward preclinical and clinical translation of photoacoustic tomography: a review. J. Biomed. Opt. 2017, 22(4), 041006.CrossRefGoogle Scholar
  22. 22.
    Perrault, S. D.; Chan, W. C. W. Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50–200 nm. J. Am. Chem. Soc. 2009, 131(47), 17042.CrossRefPubMedGoogle Scholar
  23. 23.
    Lohse, S. E.; Murphy, C. J. The quest for shape control: a history of gold nanorod synthesis. Chem. Mater. 2013, 25(8), 1250–1261.CrossRefGoogle Scholar
  24. 24.
    Chen, J. Y.; Wiley, B.; Li, Z. Y.; Campbell, D.; Saeki, F.; Cang, H.; Au, L.; Lee, J.; Li, X. D.; Xia, Y. N. Gold nanocages: Engineering their structure for biomedical applications. Adv. Mater. 2005, 17(18), 2255–261.CrossRefGoogle Scholar
  25. 25.
    Ke, H. T.; Wang, J. R.; Dai, Z. F.; Jin, E. Y. S.; Qu, Z.; Xing, Z. W.; Guo, C. X.; Yue, X. L.; Liu, J. B. Gold-nanoshelled microcapsules: a theranostic agent for ultrasound contrast imaging and photothermal therapy. Angew. Chem. Int. Ed. 2011, 50(13), 3017–3021.CrossRefGoogle Scholar
  26. 26.
    Zhang, L.; Xiao, H.; Li, J. G.; Cheng, D.; Shuai, X. T. Codelivery of doxorubicin and arsenite with reduction and pH dual-sensitive vesicle for synergistic cancer therapy. Nanoscale 2016, 8(25), 12608–12617.CrossRefPubMedGoogle Scholar
  27. 27.
    Zhou, G. Y.; Xiao, H.; Li, X. X.; Huang, Y.; Song, W.; Song, L.; Chen, M. W.; Cheng, D.; Shuai, X. T. Gold nanocage decorated pH-sensitive micelle for highly effective photothermo-chemotherapy and photoacoustic imaging. Acta Biomater. 2017, 64, 223–236.CrossRefPubMedGoogle Scholar
  28. 28.
    Lu, L.; Wang, Y.; Cao, M.; Chen, M.; Lin, B.; Duan, X.; Zhang, F.; Mao, J.; Shuai, X.; Shen, J. A novel polymeric micelle used for in vivo MR imaging tracking of neural stem cells in acute ischemic stroke. RSC Adv. 2017, 7, 15041–15052.CrossRefGoogle Scholar
  29. 29.
    Lai, J. T.; Filla, D.; Shea, R. Functional polymers from novel carboxyl-terminated trithiocarbonates as highly efficient RAFT agents. Macromolecules 2002, 35(18), 6754–6756.CrossRefGoogle Scholar
  30. 30.
    Du, J.; Tang, Y.; Lewis, A. L.; Armes, S. P. pH-sensitive vesicles based on a biocompatible zwitterionic diblock copolymer. J. Am. Chem. Soc. 2005, 127(51), 17982–17983.CrossRefPubMedGoogle Scholar
  31. 31.
    Pissuwan, D.; Boyer, C.; Gunasekaran, K.; Davis, T. P.; Bulmus, V. In vitro cytotoxicity of RAFT polymers. Biomacromolecules 2010, 11(2), 412–420.CrossRefPubMedGoogle Scholar
  32. 32.
    Chong, Y. K.; Moad, G.; Rizardo, E.; Thang, S. H. Thiocarbonylthio end group removal from RAFT-synthesized polymers by radical-induced reduction. Macromolecules 2007, 40(13), 4446–4455.CrossRefGoogle Scholar
  33. 33.
    Wang, Y. R.; Yin, T. H.; Su, Z. W.; Qiu, C.; Wang, Y.; Zheng, R. Q.; Chen, M. W.; Shuai, X. T. Highly uniform ultrasoundsensitive nanospheres produced by a pH-induced micelle-tovesicle transition for tumor-targeted drug delivery. Nano Res. 2017, doi: 10.1007/s12274-017-1939-y.Google Scholar
  34. 34.
    Kwon, G. S.; Naito, M.; Yokoyama, M.; Okano, T.; Sakurai, Y.; Kataoka, K. Physical entrapment of adriamycin in AB block copolymer micelles. Pharm. Res. 1995, 12(2), 192–195.CrossRefPubMedGoogle Scholar
  35. 35.
    Tan, Y. W.; Li, Y. F.; Zhu, D. B. Fabrication of gold nanoparticles using a trithiol (thiocyanuric acid) as the capping agent. Langmuir 2002, 18(8), 3392–3395.CrossRefGoogle Scholar
  36. 36.
    Jana, N. R.; Gearheart, L.; Murphy, C. J. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J. Phys. Chem. B 2001, 105(19), 4065–4067.CrossRefGoogle Scholar
  37. 37.
    Petersen, H.; Fechner, P. M.; Fischer, D. Kissel, T. Synthesis, characterization, and biocompatibility of polyethyleniminegraft-poly(ethylene glycol) block copolymers. Macromolecules 2002, 35(18), 6867–6874.CrossRefGoogle Scholar
  38. 38.
    Alexis, F.; Pridgen, E.; Molnar, L. K.; Farokhzad, O. C. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharmaceut. 2008, 5(4), 505–515.CrossRefGoogle Scholar
  39. 39.
    Maeda, H.; Wu, J.; Sawa, T.; Matsumura, Y.; Hori, K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control. Release 2000, 65(1-2), 271–284.CrossRefPubMedGoogle Scholar
  40. 40.
    Honary, S.; Zahir, F. Effect of zeta potential on the properties of nano-drug delivery systems - a review (Part 2). Trop. J. Pharm. Res. 2013, 12(2), 265–273.Google Scholar
  41. 41.
    Ganta, S.; Devalapally, H.; Shahiwala, A.; Amiji, M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J. Control. Release 2008, 126(3), 187–204.CrossRefPubMedGoogle Scholar
  42. 42.
    Canton, I.; Battaglia, G. Endocytosis at nanoscale. Chem. Soc. Rev. 2012, 41(7), 2718–2739.CrossRefPubMedGoogle Scholar
  43. 43.
    Shuai, X. T.; Ai, H.; Nasongkla, N.; Kim, S.; Gao, J. M. Micellar carriers based on block copolymers of poly(e-caprolactone) and poly(ethylene glycol) for doxorubicin delivery. J. Control. Release 2004, 98(3), 415–426.CrossRefPubMedGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yi Huang
    • 1
  • Xiao-Xia Li
    • 1
  • Lu Zhang
    • 1
  • Xiao-Yan Chen
    • 1
  • Cheng-Bo Liu
    • 2
  • Jing-Qin Chen
    • 2
  • Yong Wang
    • 1
    Email author
  • Xin-Tao Shuai
    • 1
  1. 1.PCFM Lab of Ministry of Education, School of Materials Science and EngineeringSun Yat-Sen UniversityGuangzhouChina
  2. 2.Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina

Personalised recommendations