Chinese Journal of Polymer Science

, Volume 36, Issue 9, pp 1055–1062 | Cite as

Effects of Binding Energy of Bioinspired Sacrificial Bond on Mechanical Performance of cis-1,4-Polyisoprene with Dual-crosslink

  • Sheng Wang
  • Zheng-Hai Tang
  • Jing Huang
  • Bao-Chun Guo


Although bioinspired sacrificial bonds have been demonstrated to be efficient in improving the mechanical properties of polymer materials, the effect of binding energy of a specific dynamic bond on the ultimate mechanical performance of a polymer network with dual-crosslink remains unclear. In this contribution, diamine and sulfur curing package are introduced simultaneously into a sulfonated cis-1,4-polyisoprene to create dually-crosslinked cis-1,4-polyisoprene network with sulfonate-aminium ionic bonds as the sacrificial bonds. Three diamines (primary, secondary and tertiary) with the same spacer between the two nitrogen atoms are used to create the ionic bonds with different binding energies. Although the binding energy of ionic bond does not affect the glass transition temperature of cis-1,4-polyisoprene (IR), it exerts definite influences on strain-induced crystallization and mechanical performance. The capabilities of diamine in dissipating energy, promoting strain-induced crystallization and enhancing the mechanical performance are in the same order of secondary diamine > primary diamine > tertiary diamine. The variations in mechanical performances are correlated to the binding energy of the ionic bond, which is determined by pKa values.


cis-1,4-Polyisoprene Ionic bond Sacrificial bond Binding energy Strain-induced crystallization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the National Basic Research Program of China (No. 2015CB654700 (2015CB654703)), the National Natural Science Foundation of China (Nos. 51673065, 51703064, 51473050 and 51333003) and Fundamental Research Funds for the Central Universities (No. 2017PY006).

Supplementary material

10118_2018_2131_MOESM1_ESM.pdf (405 kb)
Effects of Binding Energy of Bioinspired Sacrificial Bond on Mechanical Performance of cis-1,4-Polyisoprene with Dual-crosslink


  1. 1.
    Tanaka, Y. Structural characterization of natural polyisoprenes: solve the mystery of natural rubber based on structural study. Rubber Chem. Technol. 2001, 74(3), 355–375.CrossRefGoogle Scholar
  2. 2.
    Hernandez, M.; Lopez-Manchado, M. A.; Sanz, A.; Nogales, A.; Ezquerra, T. A. Effects of strain-induced crystallization on the segmental dynamics of vulcanized natural rubber. Macromolecules 2011, 44(16), 6574–6580.CrossRefGoogle Scholar
  3. 3.
    Amnuaypornsri, A.; Sakdapipanich, J.; Tanaka, Y. Green strength of natural rubber: the origin of the stress-strain behavior of natural rubber. J. Appl. Polym. Sci. 2009, 111(4), 2127–2133.CrossRefGoogle Scholar
  4. 4.
    Toki, S.; Sics, I.; Ran, S.; Liu, L.; Hsiao, B. S. New insights into structural development in natural rubber during uniaxial deformation by in situ synchrotron X-ray diffraction. Macromolecules 2002, 35(17), 6578–6584.CrossRefGoogle Scholar
  5. 5.
    Toki, S.; Sics, I.; Hsiao, B. S.; Murakami, S.; Tosaka, M.; Poompradub, S.; Kohjiya, S.; Ikeda, Y. J. Structural developments in synthetic rubbers during uniaxial deformation by in situ synchrotron X-ray diffraction. J. Polym. Sci., Part B: Polym. Phys. 2004, 42(6), 956–964.CrossRefGoogle Scholar
  6. 6.
    Kohjiya, S.; Tosaka, M.; Furutani, M.; Ikeda, Y.; Toki, S.; Hsiao, B. S. Role of stearic acid in the strain-induced crystallization of crosslinked natural rubber and synthetic cis-1,4-polyisoprene. Polymer 2007, 48(13), 3801–3848.CrossRefGoogle Scholar
  7. 7.
    Murakami, S.; Senoo, K.; Toki, S.; Kohjiya, S. Structural development of natural rubber during uniaxial stretching by in situ wide angle X-ray diffraction using a synchrotron radiation. Polymer 2002, 43(7), 2117–2120.CrossRefGoogle Scholar
  8. 8.
    Trabelsi, S.; Albouy, P. A.; Rault, J. Stress-induced crystallization around a crack tip in natural rubber. Macromolecules 2002, 35(27), 10054–10061.CrossRefGoogle Scholar
  9. 9.
    Liu, J.; Wu, S. W.; Tang, Z. H.; Lin, T. F.; Guo, B. C.; Huang, G. S. New evidence disclosed for networking in natural rubber by dielectric relaxation spectroscopy. Soft Matter 2015, 11(11), 2290–2299.CrossRefGoogle Scholar
  10. 10.
    Liu, J.; Tang, Z. H.; Huang, J.; Guo, B. C.; Huang, G. S. Promoted strain-induced-crystallization in synthetic cis-1,4-polyisoprene via constructing sacrificial bonds. Polymer 2016, 97, 580–588.CrossRefGoogle Scholar
  11. 11.
    Tosaka, M.; Murakami, S.; Poompradub, S.; Kohjiya, S.; Ikeda, Y.; Toki, S.; Sics, I.; Hsiao, B. S. Orientation and crystallization of natural rubber network as revealed by WAXD using synchrotron radiation. Macromolecules 2004, 37(9), 3299–3309.CrossRefGoogle Scholar
  12. 12.
    Ikeda, Y.; Yasuda, Y.; Hijikata, K.; Tosaka, M.; Kohjiya, S. Comparative study on strain-induced crystallization behavior of peroxide cross-linked and sulfur cross-linked natural rubber. Macromolecules 2008, 41(15), 5876–5884.CrossRefGoogle Scholar
  13. 13.
    Toki, S.; Hsiao, B. S.; Amnuaypornsri, S.; Sakdapipanich, J. New insights into the relationship between network structure and strain-induced crystallization in un-vulcanized and vulcanized natural rubber by synchrotron X-ray diffraction. Polymer 2009, 50(9), 2142–2148.CrossRefGoogle Scholar
  14. 14.
    Amnuaypornsri, S.; Toki, S.; Hsiao, B. S.; Sakdapipanich, J. The effects of endlinking network and entanglement to stress-strain relation and strain-induced crystallization of unvulcanized and vulcanized natural rubber. Polymer 2012, 53(15), 3325–3330.CrossRefGoogle Scholar
  15. 15.
    Toki, S.; Che, J.; Rong, L. X.; Hsiao, B. S.; Amnuaypornsri, S.; Nimpaiboon, A.; Sakdapipanich, J. Entanglements and networks to strain-induced crystallization and stress-strain relations in natural rubber and synthetic polyisoprene at various temperatures. Macromolecules 2013, 46(13), 5238–5248.CrossRefGoogle Scholar
  16. 16.
    Carretero-Gonzalez, J.; Verdejo, R.; Toki, S.; Hsiao, B. S.; Giannelis, E. P.; López-Manchado, M. A. Real-time crystallization of organoclay nanoparticle filled natural rubber under stretching. Macromolecules 2008, 41(7), 2295–2298.CrossRefGoogle Scholar
  17. 17.
    Carretero-Gonzalez, J.; Retsos, H.; Verdejo, R.; Toki, S.; Hsiao, B. C.; Giannelis, E. P.; López-Manchado, M. A. Effect of nanoclay on natural rubber microstructure. Macromolecules 2008, 41(18), 6763–6772.CrossRefGoogle Scholar
  18. 18.
    Wu, X.; Lin, T. F.; Tang, Z. H.; Guo, B. C.; Huang, G. S. Natural rubber/graphene oxide composites: effect of sheet size on mechanical properties and straininduced crystallization behavior. Express Polym. Lett. 2015, 9(80), 672–685.CrossRefGoogle Scholar
  19. 19.
    Nie, Y. J.; Huang, G. S.; Qu, L. L.; Wang, X. A.; Weng, G. S.; Wu, J. R. New insights into thermodynamic description of strain-induced crystallization of peroxide cross-linked natural rubber filled with clay by tube model. Polymer 2011, 52(14), 3234–3242.CrossRefGoogle Scholar
  20. 20.
    Bitinis, N.; Hernandez, M.; Verdejo, R.; Kenny, J. M.; Lopez-Manchado, M. A. Recent advances in clay/polymer nanocomposites. Adv. Mater. 2011, 23(44), 5229–5236.CrossRefGoogle Scholar
  21. 21.
    Tang, Z. H.; Zhang, L. Q.; Feng, W. J.; Guo, B. C.; Liu, F.; Jia, D. M. Rational design of graphene surface chemistry for high performance rubber/graphene composites. Macromolecules 2014, 47(24), 8663–8673.CrossRefGoogle Scholar
  22. 22.
    Kaang, S.; Gong, D.; Nah, C. Some physical characteristics of double-networked natural rubber. J. Appl. Polym. Sci. 1997, 65(5), 917–924.CrossRefGoogle Scholar
  23. 23.
    Genesky, G. D.; Aguilera-Mercado, B. M.; Bhawe, D. M.; Escobedo, F. A.; Cohen, C. Experiments and simulations: enhanced mechanical properties of end-linked bimodal elastomers. Macromolecules 2008, 41(21), 8231–8241.CrossRefGoogle Scholar
  24. 24.
    Becker, N.; Oroudjev, E.; Mutz, S.; Cleveland, J. P.; Hansma, P. K.; Hayashi, C. Y.; Makarov, D. E.; Hansma, H. G. Molecular nanosprings in spider capture-silk threads. Nat. Mater. 2003, 2, 278–283.CrossRefGoogle Scholar
  25. 25.
    Degtyar, E.; Harrington, M. J.; Politi, Y.; Fratzl, P. The mechanical role of metal ions in biogenic protein-based materials. Angew. Chem. Int. Ed. 2014, 53(45), 12026–12044.CrossRefGoogle Scholar
  26. 26.
    Fantner, G. E.; Hassenkam, T.; Kindt, J. H.; Weaver, J. C.; Birkedal, H.; Pechenik, L.; Cutroni, J. A.; Cidade, G. A.; Stucky, G. D.; Morse, D. E.; Hansma, P. K. Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nat. Mater. 2005, 4(8), 612–616.CrossRefGoogle Scholar
  27. 27.
    Wang, W. Y.; Elbanna, A. Crack propagation in bone on the scale of mineralized collagen fibrils: role of polymers with sacrificial bonds and hidden length. Bone 2014, 68, 20–31.CrossRefGoogle Scholar
  28. 28.
    Fullenkamp, D. E.; He, L. H.; Barrett, D. G.; Burghardt, W. R.; Messersmith, P. B. Mussel-inspired histidine-based transient network metal coordination hydrogels. Macromolecules 2013, 46(3), 1167–1174.CrossRefGoogle Scholar
  29. 29.
    Rose, S.; Dizeux, A.; Narita, T.; Hourdet, D.; Marcellan, A. Time dependence of dissipative and recovery processes in nanohybrid hydrogels. Macromolecules 2013, 46(10), 4095–4104.CrossRefGoogle Scholar
  30. 30.
    Luo, F.; Sun, T. L.; Nakajima, T.; Kurokawa, T.; Zhao, Y.; Sato, K.; Ihsan, A. B.; Li, X.; Guo, H.; Gong, J. P. Oppositely charged polyelectrolytes form tough, self-healing, and rebuildable hydrogels. Adv. Mater. 2015, 27(17), 2722.CrossRefGoogle Scholar
  31. 31.
    Gold, B. J.; Hovelmann, C. H.; Weiss, C.; Radulescu, A.; Allgaier, J.; Pyckhout-Hintzen, W.; Wischnewski, A.; Richter, D. Sacrificial bonds enhance toughness of dual polybutadiene networks. Polymer 2016, 87, 123–128.CrossRefGoogle Scholar
  32. 32.
    Luo, M. C.; Jian, Z.; Fu, X.; Huang, G. S.; Wu, J. R. Toughening diene elastomers by strong hydrogen bond interactions. Polymer 2016, 106, 21–28.CrossRefGoogle Scholar
  33. 33.
    Tang, Z. H.; Huang, J.; Guo, B. C.; Zhang, L. Q.; Liu, F. Bioinspired engineering of sacrificial metal-ligand bonds into elastomers with supramechanical performance and adaptive recovery. Macromolecules 2016, 49(5), 1781–1789.CrossRefGoogle Scholar
  34. 34.
    Liu, J.; Wang, S.; Tang, Z. H.; Guo, B. C.; Huang, G. S. Bioinspired engineering of two different types of sacrificial bonds into chemically cross-linked cis-1,4-polyisoprene toward a high performance elastomer. Macromolecules 2016, 49(22), 8593–8604.CrossRefGoogle Scholar
  35. 35.
    Faul, C. F. J.; Antonietti, M. Ionic self-assembly: facile synthesis of supramolecular materials. Adv. Mater. 2003, 15(9), 673–683.CrossRefGoogle Scholar
  36. 36.
    Malmierca, M. A.; GonzalezJimenez, A.; MoraBarrantes, I.; Posadas, P.; Rodriguez, A.; Ibarra, L.; Nogales, A.; Saalwachter, K.; Valentin, J. L. Characterization of network structure and chain dynamics of elastomeric ionomers by means of 1H low-field NMR. Macromolecules 2014, 47(16), 5655–5667.CrossRefGoogle Scholar
  37. 37.
    Basu, D.; Das, A.; Stockelhuber, K. W.; Jehnichen, D.; Formanek, P.; Sarlin, E.; Vuorinen, J.; Heinrich, G. Evidence for an in situ developed polymer phase in ionic elastomers. Macromolecules 2014, 47(10), 3436–3450.CrossRefGoogle Scholar
  38. 38.
    Sun, J. Y.; Zhao, X. H.; Illeperuma, W. R. K.; Chaudhuri, O.; Oh, K. H.; Mooney, D. J.; Vlassak, J. J.; Suo, Z. G. Highly stretchable and tough hydrogels. Nature 2012, 489(7414), 133–136.CrossRefGoogle Scholar
  39. 39.
    Makowski, H. S., Lundberg, R. D. and Singha, G. H., 1975, U.S. Pat., 3,870,841.Google Scholar
  40. 40.
    Zheng, L. Z.; Eisenberg, A. Dynamic mechanical properties of sulfonated cyclized cis-1,4-polyisoprene. Appl. Polym. Sci. 1982, 27(2), 657–671.CrossRefGoogle Scholar
  41. 41.
    Zhang, L.; Kucera, L. R.; Ummadisetty, S.; Nykaza, J. R.; Elabd, Y. A.; Storey, R. F.; Cavicchi, K. A.; Weiss, R. A. Supramoleclar multiblock polystyrene-polyisobutylene copolymers via ionic interactions. Macromolecules 2014, 47(13), 4387–4396.CrossRefGoogle Scholar
  42. 42.
    Mohammed, O. F.; Pines, D.; Dreyer, J. Sequential proton transfer through water bridges in acid-base reactions. Science 2005, 310(5745), 83–86.CrossRefGoogle Scholar
  43. 43.
    Yount, W. C.; Loveless, D. M.; Craig, S. L. Small-molecule dynamics and mechanisms underlying the macroscopic mechanical properties of coordinatively cross-linked polymer networks. J. Am. Chem. Soc. 2005, 127(41), 14488–14496.CrossRefGoogle Scholar
  44. 44.
    Yount, W. C.; Loveless, D. M.; Craig, S. L. Strong means slow: dynamic contributions to the bulk mechanical properties of supramolecular networks. Angew. Chem. Int. Ed. 2005, 44(18), 2746–2748.CrossRefGoogle Scholar
  45. 45.
    Meyers, M. A.; Mckittrick, J.; Chen, P. Y. Structural biological materials: critical mechanics materials connections. Science 2013, 339(6121), 773–779.CrossRefGoogle Scholar
  46. 46.
    Fu, X.; Huang, G. S.; Xie, Z. T.; Wang, X. New insights into reinforcement mechanism of nanoclay-filled isoprene rubber during uniaxial deformation by in situ synchrotron X-ray diffraction. RSC Adv. 2015, 5(32), 25171–25182.CrossRefGoogle Scholar
  47. 47.
    Wu, S. W.; Qiu, M.; Tang, Z. H.; Liu, J.; Guo, B. C. Carbon nanodots as high-functionality cross-linkers for bioinspired engineering of multiple sacrificial units toward strong yet tough elastomers. Macromolecules 2017, 50(8), 3244–3253.CrossRefGoogle Scholar
  48. 48.
    Weng, G. S.; Huang, G. S.; Qu, L. L.; Nie, Y. J.; Wu, J. R. Large-scale orientation in a vulcanized stretched natural rubber network: proved by in situ synchrotron X-ray diffraction characterization. J. Phys. Chem. B 2010, 114(21), 7179–7188.CrossRefGoogle Scholar
  49. 49.
    Ren, Y. H.; Zhao, S. H.; Yao, Q.; Li, Q. Q.; Zhang, X. Y.; Zhang, L. Q. Effects of plasticizers on the strain-induced crystallization and mechanical properties of natural rubber and synthetic polyisoprene. RSC Adv. 2015, 5(15), 11317–11324.CrossRefGoogle Scholar
  50. 50.
    Qu, L. L.; Huang, G. S.; Zhang, Z. P.; Nie, Y. J.; Weng G. S.; Wu, J. R. Synergistic reinforcement of nanoclay and carbon black in natural rubber. Polym. Int. 2010, 59(10), 1397–1402.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Sheng Wang
    • 1
  • Zheng-Hai Tang
    • 1
  • Jing Huang
    • 1
  • Bao-Chun Guo
    • 1
  1. 1.Department of Polymer Materials and EngineeringSouth China University of TechnologyGuangzhouChina

Personalised recommendations